
RapidChain: Scaling Blockchain via Full Sharding

Mahdi Zamani
Visa Research
Palo Alto, CA

Mahnush Movahedi†
Dfinity

Palo Alto, CA

Mariana Raykova
Yale University
New Haven, CT

Abstract

A major approach to overcoming the performance and scalability limitations of current blockchain
protocols is to use sharding which is to split the overheads of processing transactions among multiple,
smaller groups of nodes. These groups work in parallel to maximize performance while requiring signifi-
cantly smaller communication, computation, and storage per node, allowing the system to scale to large
networks. However, existing sharding-based blockchain protocols still require a linear amount of commu-
nication (in the number of participants) per transaction, and hence, attain only partially the potential
benefits of sharding. We show that this introduces a major bottleneck to the throughput and latency of
these protocols. Aside from the limited scalability, these protocols achieve weak security guarantees due
to either a small fault resiliency (e.g., 1/8 and 1/4) or high failure probability, or they rely on strong
assumptions (e.g., trusted setup) that limit their applicability to mainstream payment systems.

We propose RapidChain, the first sharding-based public blockchain protocol that is resilient to Byzan-
tine faults from up to a 1/3 fraction of its participants, and achieves complete sharding of the commu-
nication, computation, and storage overhead of processing transactions without assuming any trusted
setup. RapidChain employs an optimal intra-committee consensus algorithm that can achieve very high
throughputs via block pipelining, a novel gossiping protocol for large blocks, and a provably-secure re-
configuration mechanism to ensure robustness. Using an efficient cross-shard transaction verification
technique, our protocol avoids gossiping transactions to the entire network. Our empirical evaluations
suggest that RapidChain can process (and confirm) more than 7,300 tx/sec with an expected confirma-
tion latency of roughly 8.7 seconds in a network of 4,000 nodes with an overwhelming time-to-failure of
more than 4,500 years.

1 Introduction

Our global financial system is highly centralized making it resistant to change, vulnerable to failures
and attacks, and inaccessible to billions of people in need of basic financial tools [63, 28]. On the other
hand, decentralization poses new challenges of ensuring a consistent view among a group of mutually-
distrusting participants. The permissionless mode of operation, which allows open membership
and entails constant churn (i.e., join/leave) of the participants of the decentralized system, further
complicates this task. Furthermore, any agile financial system, including a decentralized one, should
be able to adequately serve realistic market loads. This implies that it should scale easily to a large
number of participants, and it should handle a high throughput of transactions with relatively low
delays in making their outputs available. Achieving these properties together should also not require
significant resources from each of the participants since otherwise, it runs contrary to the idea of
constructing a tool easily accessible to anyone.

Limitations of Traditional Approaches. Existing solutions currently either fail to solve the above
challenges or make security/performance trade-offs that, unfortunately, make them no longer truly-
decentralized solutions. In particular, traditional Byzantine consensus mechanisms such as [44, 20,

∗Email: mzamani@visa.com | mahenush@dfinity.org | mariana.raykova@yale.edu
†This work was done in part while this author was affiliated with Yale University.

1

17] can only work in a closed-membership setting, where the set of participants is fixed, and their
identities are known to everyone via a trusted third party. If used in an open setting, these protocols
can be easily compromised using Sybil attacks [25], where the adversary repeatedly rejoins malicious
parties with fresh identities to gain significant influence on the protocol outcome. Moreover, most
traditional schemes assume a static adversary who can select the set of corrupt parties only at
the start of the protocol. Existing protocols that are secure against an adaptive adversary such
as [12, 18, 38] either scale poorly with the number of participants or are inefficient.

Bitcoin and Its Limitations. Most cryptocurrencies such as Bitcoin [54] and Ethereum [16] main-
tain a distributed transaction ledger called the blockchain over a large peer-to-peer (P2P) network,
where every node maintains an updated, full copy of the entire ledger via a Byzantine consensus pro-
tocol, dubbed as the Nakamoto consensus. Unlike traditional consensus mechanisms, the Nakamoto
consensus allows new participants to join the protocol using a proof-of-work (PoW) process [27],
where a node demonstrates that it has done a certain amount of work by presenting a solution to
a computational puzzle. The use of PoW not only allows the consensus protocol to impede Sybil
attacks by limiting the rate of malicious participants joining the system, but also provides a lot-
tery mechanism through which a random leader is elected in every round to initiate the consensus
process.

Unfortunately, it is now well known that Bitcoin’s PoW-based consensus comes with serious draw-
backs such as low transaction throughput, high latency, poor energy efficiency [46], and mining-pool
centralization [34, 1]. Moreover, the protocol cannot scale out its transaction processing capacity
with the number of participants joining the protocol [47, 42]. Another major scalability issue of
Bitcoin is that every party needs to initially download the entire blockchain from the network to
independently verify all transactions. The size of the blockchain is currently about 150GB and has
nearly doubled in the past year [2]. One can expect a larger growth in the size of blockchains that
are updated via higher-throughput consensus protocols than that of Bitcoin.

Bitcoin Scalability Improvements. Recently, several protocols have been proposed to mitigate
the performance and scalability issues of Bitcoin’s blockchain [23, 29, 41, 52, 56, 47, 32, 4, 42] using
hybrid architectures that combine the open-membership nature of Bitcoin with traditional Byzantine
fault tolerance [57, 19]. While most of these protocols can reportedly improve the throughput and
latency of Bitcoin, all of them still require the often-overlooked assumption of a trusted setup to
generate an unpredictable initial common randomness in the form of a common genesis block to
bootstrap the blockchain. Similar to Bitcoin, these protocols essentially describe how one can ensure
agreement on new blocks given an initial agreement on some genesis block. Such an assumption
plays a crucial role in achieving consistency among nodes in these protocols, and if compromised,
can easily affect the security of the entire consensus protocol, casting a major contradiction to the
decentralized nature of cryptocurrencies.

In addition to being partially decentralized, most of these solutions have either large per-node
storage requirements [23, 29, 41, 52, 56, 47, 4], low fault resiliency [47, 42], incomplete specifica-
tions [23, 41], or other security issues [41, 47, 42] (see Section 2.2 for more details). Furthermore,
all previous protocols require every participant in the consensus protocol to broadcast a message to
the entire network to either submit their consensus votes [29, 52], verify transactions [41, 47, 42],
and/or update every node’s local blockchain replica [47, 56, 32, 4].

While the large overhead of such a broadcast for every participant is usually reduced from a linear
number of messages (with respect to the number of participants) to nearly a constant using a peer-to-
peer gossiping protocol [36], the relatively high latency of such a “gossip-to-all” invocation (e.g., 12.6
seconds per block on average [24]) increases the overall latency of the consensus protocol significantly
(e.g., the gossip-to-all latency roughly quadruples the consensus time in [42]). Moreover, due to

2

the very high transaction throughput of most scalable blockchain protocols (e.g., about 3,500 tx/sec
in [42]), the bandwidth usage of each node becomes very large (e.g., at least 45Mbps in [42] – see
Section 5 for more details), if all transactions are gossiped to the entire network.

1.1 Our Contributions

We propose RapidChain, a Byzantine-resilient public blockchain protocol that improves upon the
scalability and security limitations of previous work in several ways. At a high level, RapidChain
partitions the set of nodes into multiple smaller groups of nodes called committees that operate
in parallel on disjoint blocks of transactions and maintain disjoint ledgers. Such a partitioning of
operations and/or data among multiple groups of nodes is often referred to as sharding [21] and has
been recently studied in the context of blockchain protocols [47, 42]. By enabling parallelization of
the consensus work and storage, sharding-based consensus can scale the throughput of the system
proportional to the number of committees, unlike the basic Nakamoto consensus.

Let n denote the number of participants in the protocol at any given time, and m � n denote
the size of each committee. RapidChain creates k = n/m committees each of size m = c logn nodes,
where c is a constant depending only on the security parameter (in practice, c is roughly 20). In
summary, RapidChain provides the following novelties:

• Sublinear Communication. RapidChain is the first sharding-based blockchain protocol that
requires only a sublinear (i.e., o(n)) number of bits exchanged in the network per transaction. In
contrast, all previous work incur an Ω(n) communication overhead per transaction (see Table 1).

• Higher Resiliency. RapidChain is the first sharding-based blockchain protocol that can tol-
erate corruptions from less than a 1/3 fraction of its nodes (rather than 1/4) while exceeding
the throughput and latency of previous work (e.f., [47, 42]).

• Rapid Committee Consensus. Building on [5, 60], we reduce the communication overhead
and latency of P2P consensus on large blocks gossiped in each committee by roughly 3-10 times
compared to previous solutions [47, 32, 4, 42].

• Secure Reconfiguration. RapidChain builds on the Cuckoo rule [8, 62] to provably protect
against a slowly-adaptive Byzantine adversary. This is an important property missing in pre-
vious sharding-based protocols [47, 42]. RapidChain also allows new nodes to join the protocol
in a seamless way without any interruptions or delays in the protocol execution.

• Fast Cross-Shard Verification. We introduce a novel technique for partitioning the
blockchain such that each node is required to store only a 1/k fraction of the entire blockchain.
To verify cross-shard transactions, RapidChain’s committees discover each other via an efficient
routing mechanism inspired by Kademlia [48] that incurs only a logarithmic (in number of com-
mittees) latency and storage. In contrast, the committee discovery in existing solutions [47, 42]
requires several “gossip-to-all” invocations.

• Decentralized Bootstrapping. RapidChain operates in the permissionless setting that allows
open membership, but unlike most previous work [29, 41, 56, 47, 42, 4], does not assume the ex-
istence of an initial common randomness, usually in the form of a common genesis block. While
common solutions for generating such a block require exchanging Ω(n2) messages, RapidChain
can bootstrap itself with only O(n

√
n) messages without assuming any initial randomness.

We also implement a prototype of RapidChain to evaluate its performance and compare it with
the state-of-the-art sharding-based protocols. Table 1 shows a high-level comparison between the

3

Protocol #
Nodes

Resiliency Complexity1 Throughput Latency Storage2 Shard
Size

Time to
Fail

Elastico [47] n= 1,600 t < n/4 Ω(m2/b+n) 40 tx/sec 800 sec 1x m= 100 1 hour

OmniLedger [42] n= 1,800 t < n/4 Ω(m2/b+n) 500 tx/sec 14 sec 1/3x m= 600 230 years

OmniLedger [42] n= 1,800 t < n/4 Ω(m2/b+n) 3,500 tx/sec 63 sec 1/3x m= 600 230 years

RapidChain n= 1,800 t < n/3 O (m2/b+m logn) 4,220 tx/sec 8.5 sec 1/9x m= 200 1,950 years

RapidChain n=4,000 t < n/3 O (m2/b+m logn) 7,380 tx/sec 8.7 sec 1/16x m=250 4,580 years

Table 1: Comparison of RapidChain with state-of-the-art sharding blockchain protocols (b is the block size)
results. In this table, we assume 512B/tx, one-day long epochs, 100ms network latency for all
links, and 20Mbps bandwidth for all nodes in all three protocols. The choices of 1,600 and 1,800
nodes for [47] and [42] respectively is based on the maximum network sizes reported in these work.
Unfortunately, the time-to-failure of the protocol of [47] decreases rapidly for larger network sizes.
For [42], we expect larger network sizes will, at best, only slightly increase the throughput due to
the large committee sizes (i.e., m) required.

The latency numbers reported in Table 1 refer to block (or transaction) confirmation times which
is the delay from the time that a node proposes a block to the network until it can be confirmed by
all honest nodes as a valid transaction. We refer the reader to Section 2.2 and Section 5 for details
of our evaluation and comparison with previous work.

1.2 Overview of RapidChain

RapidChain proceeds in fixed time periods called epochs. In the first epoch, a one-time bootstrapping
protocol (described in Section 4.2) is executed that allows the participants to agree on a committee
of m = O(logn) nodes in a constant number of rounds. Assuming t < n/3 nodes are controlled by
a slowly-adaptive Byzantine adversary, the committee-election protocol samples a committee from
the set of all nodes in a way that the fraction of corrupt nodes in the sampled set is bounded by 1/2
with high probability. This committee, which we refer to as the reference committee and denote it
by CR , is responsible for driving periodic reconfiguration events between epochs. In the following,
we describe an overview of the RapidChain protocol in more details.

Epoch Randomness. At the end of every epoch i, CR generates a fresh randomness, ri+1, referred
to as the epoch randomness for epoch i + 1. This randomness is used by the protocol to (1) sample a
set of 1/2-resilient committees, referred to as the sharding committees, at the end of the first epoch,
(2) allow every participating node to obtain a fresh identity in every epoch, and (3) reconfigure the
existing committees to prevent adversarial takeover after nodes join and leave the system at the
beginning of every epoch or node corruptions happening at the end of every epoch.

Peer Discovery and Inter-Committee Routing. The nodes belonging to the same sharding com-
mittee discover each other via a peer-discovery algorithm. Each sharding committee is responsible
for maintaining a disjoint transaction ledger known as a shard, which is stored as a blockchain by
every member of the committee. Each transaction tx is submitted by a user of the system to a
small number of arbitrary RapidChain nodes who route tx, via an inter-committee routing protocol,
to a committee responsible for storing tx. We refer to this committee as the output committee for
tx and denote it by Cout. This committee is selected deterministically by hashing the ID of tx to a
number corresponding to Cout. Inspired by Kademlia [48], the verifying committee in RapidChain

1Total message complexity of consensus per transaction (see Section 6.6).
2Reduction in the amount of storage required for each participant after the same number of transactions are processed (and

confirmed) by the network.

4

communicates with only a logarithmic number of other committees to discover the ones that store
the related transactions.

Cross-Shard Verification. The members of Cout batch several transactions into a large block
(about 2MB), and then, append it to their own ledger. Before the block can be appended, the
committee has to verify the validity of every transaction in the block. In Bitcoin, such a verifi-
cation usually depends on other (input) transactions that record some previously-unspent money
being spent by the new transaction. Since transactions are stored into disjoint ledgers, each stored
by a different committee, the members of Cout need to communicate with the corresponding input
committees to ensure the input transactions exist in their shards.

Intra-Committee Consensus. Once all of the transactions in the block are verified, the members
of Cout participate in an intra-committee consensus protocol to append the block to their shard.
The consensus protocol proceeds as follows. First, the members of Cout choose a local leader using
the current epoch randomness. Second, the leader sends the block to all the members of Cout
using a fast gossiping protocol that we build based on the information dispersal algorithm (IDA) of
Alon et al. [6, 5] for large blocks.

Third, to ensure the members of Cout agree on the same block, they participate in a Byzantine
consensus protocol that we construct based on the synchronous protocol of Ren et al. [60]. This
protocol allows RapidChain to obtain an intra-committee consensus with the optimal resiliency
of 1/2, and thus, achieve a total resiliency of 1/3 with small committees. While the protocol
of Ren et al. requires exchanging O(m2`) bits to broadcast a message of length ` to m parties, our
intra-committee consensus protocol requires O(m2h logm +m`) bits, where h is the length of a hash
that depends only on the security parameter.

Protocol Reconfiguration. A consensus decision in RapidChain is made on either a block of
transactions or on a reconfiguration block. A reconfiguration block is generated periodically at the
end of a reconfiguration phase that is executed at the end of every epoch by the members of CR to
establish two pieces of information: (1) a fresh epoch randomness, and (2) a new list of participants
and their committee memberships. The reconfiguration phase allows RapidChain to re-organize its
committees in response to a slowly-adaptive adversary [56] that can commit join-leave attacks [25]
or corrupt nodes at the end of every epoch. Such an adversary is allowed to corrupt honest nodes
(and hence, take over committees) only at the end of epochs, i.e., the set of committees is fixed
during each epoch.

Since re-electing all committees incurs a large communication overhead on the network, Rapid-
Chain performs only a small reconfiguration protocol built on the Cuckoo rule [8, 62] at the end of
each epoch. Based on this strategy, only a constant number of nodes are moved between committees
while provably guaranteeing security as long as at most a constant number of nodes (with respect
to n) join/leave or are corrupted in each epoch.

During the reconfiguration protocol happening at the end of the i-th epoch, CR generates a
fresh randomness, ri+1, for the next epoch and sends ri+1 to all committees. The fresh randomness
not only allows the protocol to move a certain number of nodes between committees in an unpre-
dictable manner, thus hindering malicious committee takeovers, but also allows creation of fresh
computational puzzles for nodes who want to participate in the next epoch (i.e., epoch i + 1).

Any node that wishes to participate in epoch i + 1 (including a node that has already partici-
pated in previous epochs) has to establish an identity (i.e., a public key) by solving a fresh PoW
puzzle that is randomized with ri+1. The node has to submit a valid PoW solution to CR before
a “cutoff time” which is roughly 10 minutes after ri+1 is revealed by CR during the reconfiguration
phase. Once the cutoff time has passed, the members of CR verify each solution and, if accepted,

5

add the corresponding node’s identity to the list of valid participants for epoch i + 1. Next, CR

members run the intra-committee consensus protocol to agree on and record the identity list within
CR ’s ledger in a reconfiguration block that also includes ri+1 and the new committee memberships.
This block is sent to all committees using the inter-committee routing protocol (see Protocol 1).

Further Remarks. Note that nodes are allowed to reuse their identities (i.e., public keys) across
epochs as long as each of them solves a fresh puzzle per epoch for a PoW that is tied to its identity
and the latest epoch randomness. Also, note that the churn on CR is handled in exactly the same
way as it is handled in other committees: ri+1 generated by the CR members in epoch i determines
the new set of CR members for epoch i+1. Finally, the difficulty of PoW puzzles used for establishing
identities is fixed for all nodes throughout the protocol and is chosen in such a way that each node
can only solve one puzzle during each 10-minute period, assuming without loss of generality, that
each node has exactly one unit of computational power (see Section 3 for more details).

Paper Organization. In Section 2, we review related work and present a background on previous
work that RapidChain builds on. In Section 3, we state our network and threat models and define the
general problem we aim to solve. We present our protocol design in Section 4. We formally analyze
the security and performance of RapidChain in Section 6. Finally, we describe our implementation
and evaluation results in Section 5 and conclude in Section 7.

2 Background and Related Work

We review two categories of blockchain consensus protocols: committee-based and sharding-based
protocols. We refer the reader to [9] for a complete survey of previous blockchain consensus protocols.
Next, we review recent progress on synchronous Byzantine consensus and information dispersal
algorithms that RapidChain builds on.

2.1 Committee-Based Consensus

The notion of committees in the context of consensus protocols was first introduced by Bracha [13] to
reduce the round complexity of Byzantine agreement, which was later improved in, e.g., [55, 61]. The
idea of using committees for scaling the communication and computation overhead of Byzantine
agreement dates back to the work of King et al. [39] and their follow-up work [38], which allow
Byzantine agreement in fully-connected networks with only a sublinear per-node overhead, w.r.t. the
number of participants. Unfortunately, both work provide only theoretical results and cannot be
directly used in the public blockchain setting (i.e., an open-membership peer-to-peer network).

Decker et al. [23] propose the first committee-based consensus protocol, called PeerCensus, in the
public blockchain model. They propose to use PBFT [20] inside a committee to approve transactions.
Unfortunately, PeerCensus does not clearly mention how a committee is formed and maintained to
ensure honest majority in the committee throughout the protocol. Hybrid Consensus [56] proposes
to periodically select a committee that runs a Byzantine consensus protocol assuming a slowly-
adaptive adversary that can only corrupt honest nodes in certain periods of time. ByzCoin [41]
proposes to use a multi-signature protocol inside a committee to improve transaction throughput.
Unfortunately, ByzCoin’s specification is incomplete and the protocol is known to be vulnerable to
Byzantine faults [56, 4, 9].

Algorand [32] proposes a committee-based consensus protocol called BA? that uses a verifiable
random function (VRF) [51] to randomly select committee members, weighted by their account bal-
ances (i.e., stakes), in a private and non-interactive way. Therefore, the adversary does not know

6

which node to target until it participates in the BA? protocol with other committee members. Algo-
rand replaces committee members with new members in every step of BA? to avoid targeted attacks
on the committee members by a fully-adaptive adversary. Unfortunately, the randomness used in
each VRF invocation (i.e., the VRF seed) can be biased by the adversary; the protocol proposes a
look-back mechanism to ensure strong synchrony and hence unbiased seeds, which unfortunately,
results in a problematic situation known as the “nothing at stake” problem [32]. To solve the biased
coin problem, Dfinity[33] propose a new VRF protocol based on non-interactive threshold signature
scheme with uniqueness property.

Assuming a trusted genesis block, Solida [4] elects nodes onto a committee using their solutions to
PoWs puzzles that are revealed in every round via 2t +1 committee member signatures to avoid pre-
computation (and withholding) attacks. To fill every slot in the ledger, a reconfigurable Byzantine
consensus protocol is used, where a consensus decision is made on either a batch of transactions or a
reconfiguration event. The latter records membership change in the committee and allows replacing
at most one member in every event by ranking candidates by their PoW solutions. The protocol
allows the winning candidate to lead the reconfiguration consensus itself avoiding corrupt internal
leaders to intentionally delay the reconfiguration events in order to buy time for other corrupt nodes
in the PoW process.

2.2 Sharding-Based Consensus

Unlike Bitcoin, a sharding-based blockchain protocol can increase its transaction processing power
with the number of participants joining the network by allowing multiple committees of nodes
process incoming transactions in parallel. Thus, the total number of transaction processed in each
consensus round by the entire protocol is multiplied by the number of committees. While there are
multiple exciting, parallel work on sharding-based blockchain protocols such as [64, 65], we only
study results that focus on handling sharding in the Bitcoin transaction model.

2.2.1 RSCoin

Danezis and Meiklejohn [22] propose RSCoin, a sharding-based technique to make centrally-banked
cryptocurrencies scalable. While RSCoin describes an interesting approach to combine a central-
ized monetary supply with a distributed network to introduce transparency and pseudonymity to
the traditional banking system, its blockchain protocol is not decentralized as it relies on a trusted
source of randomness for sharding of validator nodes (called mintettes) and auditing of transactions.
Moreover, RSCoin relies on a two-phase commit protocol executed within each shard which, unfor-
tunately, is not Byzantine fault tolerant and can result in double-spending attacks by a colluding
adversary.

2.2.2 Elastico

Luu et al. [47] propose Elastico, the first sharding-based consensus protocol for public blockchains.
In every consensus epoch, each participant solves a PoW puzzle based on an epoch randomness
obtained from the last state of the blockchain. The PoW’s least-significant bits are used to determine
the committees which coordinate with each other to process transactions.

While Elastico can improve the throughput and latency of Bitcoin by several orders of magni-
tude, it still has several drawbacks: (1) Elastico requires all parties to re-establish their identities
(i.e., solve PoWs) and re-build all committees in “every” epoch. Aside from a relatively large com-
munication overhead, this incurs a significant latency that scales linearly with the network size as
the protocol requires more time to solve enough PoWs to fill up all committees; (2) In practice,

7

Elastico requires a small committee size (about 100 parties) to limit the overhead of running PBFT
in each committee. Unfortunately, this increases the failure probability of the protocol significantly
and, using a simple analysis (see [42]), this probability can be as high as 0.97 after only six epochs,
rendering the protocol completely insecure in practice; (3) The randomness used in each epoch of
Elastico can be biased by an adversary, and hence, compromise the committee selection process and
even allow malicious nodes to precompute PoW puzzles; (4) Elastico requires a trusted setup for
generating an initial common randomness that is revealed to all parties at the same time; (5) While
Elastico allows each party to only verify a subset of transactions, it still has to broadcast all blocks
to all parties and requires every party to store the entire ledger; (6) Finally, Elastico can only tol-
erate up to a 1/4 fraction faulty parties even with a high failure probability. Elastico requires this
low resiliency bound to allow practical committee sizes.

2.2.3 OmniLedger

In a more recent work, Kokoris-Kogias et al. [42] propose OmniLedger, a sharding-based distributed
ledger protocol that attempts to fix some of the issues of Elastico. Assuming a slowly-adaptive
adversary that can corrupt up to a 1/4 fraction of the nodes at the beginning of each epoch, the
protocol runs a global reconfiguration protocol at every epoch (about once a day) to allow new
participants to join the protocol.

The protocol generates identities and assigns participants to committees using a slow iden-
tity blockchain protocol that assumes synchronous channels. A fresh randomness is generated in
each epoch using a bias-resistant random generation protocol that relies on a verifiable random
function (VRF) [51] for unpredictable leader election in a way similar to the lottery algorithm
of Algorand [50]. The consensus protocol assumes partially-synchronous channels to achieve fast
consensus using a variant of ByzCoin [41], where the epoch randomness is further used to divide a
committee into smaller groups. The ByzCoin’s design is known to have several security/performance
issues [56, 4], notably that it falls back to all-to-all communication in the Byzantine setting. Unfor-
tunately, due to incomplete (and changing) specification of the new scheme, it is unclear how the
new scheme used in OmniLedger can address these issues.

Furthermore, there are several challenges that OmniLedger leaves unsolved: (1) Similar to Elas-
tico, OmniLedger can only tolerate t < n/4 corruptions. In fact, the protocol can only achieve low
latency (less than 10 seconds) when t < n/8; (2) OmniLedger’s consensus protocol requires O(n)

per-node communication as each committee has to gossip multiple messages to all n nodes for each
block of transaction; (3) OmniLedger requires a trusted setup to generate an initial unpredictable
configuration to “seed” the VRF in the first epoch. Trivial algorithms for generating such a common
seed require Ω(n2) bits of communication; (4) OmniLedger requires the user to participate actively
in cross-shard transactions which is often a strong assumption for typically light-weight users; (5)
Finally, OmniLedger seems vulnerable to denial-of-service (DoS) attacks by a malicious user who
can lock arbitrary transactions leveraging the atomic cross-shard protocol.

When t < n/4, OmniLedger can achieve a high throughput (i.e., more than 500 tx/sec) only when
an optimistic trust-but-verify approach is used to trade-off between throughput and transaction
confirmation latency. In this approach, a set of optimistic validators process transactions quickly
providing provisional commitments that are later verified by a set of core validators. While such
an approach seems useful for special scenarios such as micropayments to quickly process low-stake
small transactions, it can be considered as a high-risk approach in regular payments, especially
due to the lack of financial liability mechanisms in today’s decentralized systems. Nevertheless,
any blockchain protocol (including Bitcoin’s) has a transaction confirmation latency that has to be
considered in practice to limit the transaction risk.

8

2.3 Synchronous Consensus

The widely-used Byzantine consensus protocol of Castro and Liskov [20], known as PBFT, can
tolerate up to t < n/3 corrupt nodes in the authenticated setting (i.e., using digital signatures) with
asynchronous communication channels. While asynchronous Byzantine consensus requires t < n/3
even with digital signatures [15], synchronous consensus can be solved with t < n/2 using digital
signatures. Recently, Ren et al. [60] propose an expected constant-round algorithm for Byzantine
consensus in a synchronous, authenticated communication network, where up to t < n/2 nodes can
be corrupt. While the best known previous result, due to Katz and Koo [37], requires 24 rounds of
communication in expectation, the protocol of Ren et al. requires only 8 rounds in expectation.

Assuming a random leader-election protocol exists, the protocol of Ren et al. runs in iterations
with a new unique leader in every iteration. If the leader is honest, then the consensus is guaranteed
in that iteration. Otherwise, the Byzantine leader can prevent progress but cannot violate safety,
meaning that some honest nodes might not terminate at the end of the iteration but all honest
nodes who terminate in that iteration will output the same value, called the safe value. If at least
one node can show to the new leader that has decided on a safe value, then the new leader proposes
the same value in the next iteration. Otherwise, the new leader proposes a new value.

2.4 Information Dispersal Algorithms

Rabin [58] introduces the notion of information dispersal algorithms (IDA) that can split a message
(or file) into multiple chunks in such a way that a subset of them will be sufficient to reconstruct
the message. This is achieved using erasure codes [11] as a particular case of error-correcting
codes (ECC) allowing some of the chunks to be missing but not modified. Krawczyk [43] extends
this to tolerate corrupted (i.e., altered) chunks by computing a fingerprint for each chunk and storing
the vector of fingerprints using ECC. Alon et al. [6, 5] describe a more-efficient IDA mechanism by
computing a Merkle hash tree [49] over encoded chunks in order to verify whether each of the
received chunks is corrupted.

In RapidChain, we build on the IDA of Alon et al. [5] to perform efficient gossips on large blocks
within each committee. Once an ECC-encoded message is dispersed in the network via IDA, honest
nodes agree on the root of the Merkle tree using the intra-committee consensus protocol to ensure
consistency. Using the corresponding authentication path in the Merkle tree sent by the sender,
recipients can verify the integrity of all chunks and use a decoding mechanism to recover the message
(see Section 4.3 for more details).

3 Model and Problem Definition

Network Model. Consider a peer-to-peer network with n nodes who establish identities (i.e., pub-
lic/private keys) through a Sybil-resistant identity generation mechanism such as that of [7], which
requires every node to solve a computationally-hard puzzle on their locally-generated identities (i.e.,
public keys) verified by all other (honest) nodes without the assumption of a trusted randomness
beacon. Without loss of generality and similar to most hybrid blockchain protocols [23, 56, 47, 42],
we assume all participants in our consensus protocol have equivalent computational resources.

We assume all messages sent in the network are authenticated with the sender’s private key.
The messages are propagated through a synchronous gossip protocol [36] that guarantees a message
sent by an honest node will be delivered to all honest nodes within a known fixed time, ∆, but
the order of these messages is not necessarily preserved. This is the standard synchronous model
adopted by most public blockchain protocols [47, 32, 42, 4]. We require synchronous communication

9

only during our intra-committee consensus. In other parts of our protocol, we assume partially-
synchronous channels [20] between nodes with exponentially-increasing time-outs (similar to [42])
to minimize latency and achieve responsiveness.

Threat Model. We assume nodes may disconnect from the network during an epoch or between
two epochs due to any reason such as internal failure or network jitter. We also consider a proba-
bilistic polynomial-time Byzantine adversary who corrupts t < n/3 of the nodes at any time. The
corrupt nodes not only may collude with each other but also can deviate from the protocol in any
arbitrary manner, e.g., by sending invalid or inconsistent messages, or remaining silent. Similar
to most committee-based protocols [23, 41, 56, 42, 4], we assume the adversary is slowly adaptive,
meaning that it is allowed to select the set of corrupt nodes at the beginning of the protocol and/or
between each epoch but cannot change this set within the epoch.

At the end of each epoch, the adversary is allowed to corrupt a constant (and small) number of
uncorrupted nodes while maintaining their identities. In addition, the adversary can run a join-leave
attack [25, 8], where it rejoins a constant (and small) number of corrupt nodes using fresh identities
in order to compromise one or more committees. However, at any moment, at least a 2/3 fraction
of the computational resources belong to uncorrupted participants that are online (i.e., respond
within the network time bound). Finally, we do not rely on any public-key infrastructure or any
secure broadcast channel, but we assume the existence of a cryptographic hash function, which we
model as a random oracle for our security analysis.

Problem Definition. We assume a set of transactions are sent to our protocol by a set of users
that are external to the protocol. Similar to Bitcoin [54], a transaction consists of a set of inputs
and outputs that reference other transactions, and a signature generated by their issuer to certify
its validity. The set of transactions is divided into k disjoint blocks. Let xi, j represent the j-th
transaction in the i-th block. All nodes have access to an external function д that, given any
transaction, outputs 0 or 1 indicating whether the transaction is invalid or not respectively, e.g., the
sum of all outputs of a transaction is equal to the sum of its inputs. The protocol Π outputs a set
X containing k disjoint subsets or shards Xi = {xi, j }, for every j ∈ {1..|Xi |} such that the following
conditions hold:

• Agreement: For every i ∈ {1..k}, Ω(logn) honest nodes agree on Xi with a high probability of at
least 1 − 2−λ , where λ is the security parameter.

• Validity: For every i ∈ {1..k} and j ∈ {1..|Xi |}, д(xi, j) = 1.

• Scalability: k grows linearly with n.

• Efficiency: The per-node communication and computation complexity is o(n) and the per-node
storage complexity is o(s), where s is the total number of transactions.

4 Our Protocol

In this section, we present RapidChain in detail. We start by defining notations and terms used in
the rest of the paper.

Notation and Terminology. Let n denote the total number of nodes and t < n/3 denote the total
number of corrupt nodes. We say an event occurs with high probability meaning that it occurs with
probability 1 − O(1/2λ), where λ is the security parameter. We refer to any set of m = o(n) nodes
as a committee if at least an f < 1/2 fraction of its members belongs to honest nodes. Let node P

10

be a member of a group C. We refer to other members of C as the neighbors of P in C. When we
say a committee runs a protocol, we mean all honest members of the committee participate in an
execution of the protocol. Let C1,C2 be two committees. When we say C1 sends a message M to
C2, we mean every honest member of C1 sends M to every member of C2 who he knows. Since each
member of C2 may receive different messages due to malicious behavior, it chooses the message with
a frequency of at least 1/2 + 1.

4.1 Design Components

RapidChain consists of three main components: Bootstrap, Consensus, and Reconfiguration. The
protocol starts with Bootstrap and then proceeds in epochs, where each epoch consists of multiple
iterations of Consensus followed by a Reconfiguration phase. We now explain each component in
more details.

Bootstrapping. The initial set of participants start RapidChain by running a committee election
protocol, where all nodes agree on a group of O(

√
n) nodes which we refer to as the root group.

The group is responsible for generating and distributing a sequence of random bits that are used to
establish a reference committee of size O(logn). Next, the reference committee creates k committees
{C1, ...,Ck } each of size O(logn). The bootstrap phase runs only once at the start RapidChain.

Consensus. Once members of each committee are done with the epoch reconfiguration, they wait
for external users to submit their transactions. Each user sends its transactions to a subset of nodes
(found via a P2P discovery protocol) who batch and forward the transactions to the corresponding
committee responsible for processing them. The committee runs an intra-committee consensus
protocol to approve the transaction and add it to its ledger.

Reconfiguration. Reconfiguration allows new nodes to establish identities and join the existing
committees while ensuring all the committees maintain their 1/2 resiliency. In Section 4.6, we
describe how to achieve this goal using the Cuckoo rule [62] without regenerating all committees.

In the following, we first describe our Consensus component in Section 4.3 assuming a set of
committees exists. Then, we describe how cross-shard transactions can be verified in Section 4.4,
and how committees can communicate with each other via an inter-committee routing protocol in
Section 4.5. Next, we describe the Reconfiguration component in Section 4.6, and finally, finish this
section by describing how to bootstrap the committees in Section 4.2.

4.2 Decentralized Bootstrapping

Inspired by [40], we first construct a deterministic random graph, referred to as the sampler graph,
which allows sampling a number of groups such that the distribution of corrupt nodes in the majority
of the groups is within a δ fraction of the number of corrupt nodes in the initial set. At the
bootstrapping phase of RapidChain, a sampler graph is created locally by every participant of the
bootstrapping protocol using a hard-coded seed and the initial network size which is known to all
nodes since we assume the initial set of nodes have already established identities.

Sampler Graph. Let G(L,R) be a random bipartite graph, where the degree of every node in R

is dR = O(
√
n). For each node in R, its neighbors in L are selected independently and uniformly at

random without replacement. The vertices in L represent the network nodes and the vertices in R

represent the groups. A node is a member of a group if they are connected in graph G. Let T ⊆ L be
the largest coalition of faulty nodes and S ⊆ R be any subset of groups. Let E(T , S) denote the event
that every group in S has more than a |T |

|L | +δ fraction of its edges incident to nodes in T . Intuitively,

11

E captures the event that all groups in S are “bad”, i.e., more than a |T |
|L | + δ fraction of their parties

are faulty.
In Section 6.4, we prove that the probability of E(T , S) is less than 2e(|L |+ |R |) ln 2−δ2dR |S |/2. We

choose practical values for |R | and dR such that the failure probability of our bootstrap phase, i.e.,
the probability of E(T , S), is minimized. For example, for 4,000 nodes (i.e., |L| = 4,000), we set
dR = 828 (i.e., a group size of 828 nodes) and |R | = 642 to get a failure probability of 2−26.36. In
Section 6.1, we use this probability to bound the probability that each epoch of RapidChain fails.

Once the groups of nodes are formed using the sampler graph, they participate in a randomized
election procedure. Before describing the procedure, we describe how a group of nodes can agree
on an unbiased random number in a decentralized fashion.

Subgroup Election. During the election, members of each group run the DRG protocol to generate
a random string s and use it to elect the parties associated with the next level groups: Each node
with identification ID computes h = H (s | |ID) and will announces itself elected if h <= 2256−e , where
H is a hash function modeled as a random oracle. All nodes sign the (ID, s) of the e elected nodes
who have the smallest h and gossip their signatures in the group as a proof of election for the elected
node. In practice, we set e = 2.

Subgroup Peer Discovery. After each subgroup election, all nodes must learn the identities of
the elected nodes from each group. The elected nodes will gossip this information and a proof, that
consists of dR/2 signature on (ID, s) from different members of the group, to all the nodes. If more
than e nodes from the group correctly announce they got elected, the group is dishonest and all
honest parties will not accept any message from any elected members of that group.

Committee Formation. The result of executing the above election protocol is a group with honest
majority whom we call root group. Root group selects the members of the first shard, reference shard.
The reference committee partitions the set of all nodes at random into sharding committees which
are guaranteed to have 1/2 honest nodes, and which store the shards as discussed in Section 4.4.

Election Network. The election network is constructed by chaining ` sampler graphs
{G(L1,R1), ...,G(L`,R`)} together. All sampler graphs definitions are included in the protocol speci-
fication. Initially, the n nodes are in L1. Based on the edges in the graph, every node is assigned
to a set of groups in R1. Then, each group runs a subgroup election protocol (described below) to
elect a random subset of its members. The elected members will then serve as the nodes in L2 of
G(L2,R2). This process continues to the last sampler graph G(L`,R`) at which point only a single
group is formed. We call the last group, the leader group and we construct the election network
such that the leader group has honest majority with high probability.

To construct the election network, we set

|Li | =
⌈
|Li−1 |

αi+βiγi
⌉
, |Ri | = d|Li |

αi e , (1)

where |L1 | = n, |R1 | = nαi , 0 < αi , βi ,γi < 1, and i = {2, ..., `}. It can be easily shown that for some
constant `, |R` | = 1. From Equation 3, we can bound the error probability for every level i of the
election network denoted by pi , where

pi ≤ 2e |Li |+ |Ri |−δ
2dRi |Si |/2. (2)

In Section 6.4, we discuss how the parameters α , β and γ are chosen to instantiate such an election
graph and present a novel analysis that allows us to obtain better bounds for their sizes.

12

Level 0

Level 1

Level 2

Level 3

Subgroup

Group

Nodes

Election Network

Root group

Figure 1: The election network

4.3 Consensus in Committees

Our intra-committee consensus protocol has two main building blocks: (1) A gossiping protocol to
propagate the messages (such as transactions and blocks) within a committee; (2) A synchronous
consensus protocol to agree on the header of the block.

4.3.1 Gossiping Large Messages

Inspired by the IDA protocol of [5], we refer to our gossip protocol for large messages as IDA-Gossip.
Let M denote the message to be gossiped to d neighbors, ϕ denote the fraction of corrupt neighbors,
and κ denote the number of chunks of the large message. First, the sender divides M into (1 − ϕ)κ
equal-sized chunks M1,M2, . . . ,M(1−ϕ)κ and applies an erasure coding scheme (e.g., Reed-Solomon
erasure codes [59]) to create an additional ϕκ parity chunk to obtain M1,M2, . . . ,Mκ . Now, if the
sender is honest, the original message can be reconstructed from any set of (1 − ϕ)κ chunks.

Next, the sender computes a Merkle hash tree with leaves M1, . . .Mκ . It then gossips Mi and the
corresponding Merkle proof, for all 1 ≤ i ≤ κ, by sending a unique set of κ/d chunks (assuming κ is
divisible by d) to each of its d neighbors. The neighbors then gossip the chunks to their neighbors
and so on. Each node verifies the message it receives using the Merkle proof and the Merkle root.
Once a node receives (1 − ϕ)κ valid chunks, it reconstructs the message M, e.g., using the decoding
algorithm of Berlekamp and Welch [10].

Our IDA-Gossip protocol is not a reliable broadcast protocol as it cannot prevent equivocation
by the sender. Nevertheless, IDA-Gossip requires much less communication and is faster than
reliable broadcast protocols (such as [14]) to propagate large blocks of transactions (about 2MB in
RapidChain). To achieve consistency, we will later run a consensus protocol only on the root of the
Merkle tree after gossiping the block.

Improvement via Sparsification. Let h(Mi) denote the hash of Mi , and h(Mi ,Mj) denote the digest
stored at the first common parent of Mi and Mj . Let Sib(Mi) denote all sibling nodes of the nodes
on the path from the root to Mi . Thus, {h(Mi), h(M1,Mκ),Sib(Mi)} is the Merkle proof to verify
the validity of Mi . We further optimize the IDA-Gossip based on the observation that if the source
sends Sib(Mi) to Pi for every i, the Merkle hashes near the root of the tree are sent to almost all
the nodes. For example, half of the nodes receive h(M1,Mκ/2). Instead, for any intermediate digest
h(Mi ,Mj), it is sufficient to send it to a smaller subset of the nodes.

In RapidChain, the source chooses a random subset of size (1 − ϕ)d of its neighbors and sends
the digest only to the nodes in that subset. We refer to this process as sparsification. As a result,

13

a node may receive a message from the source that does not contain all of the digests needed to
verify the validity of the gossiped message. Therefore, the node may not be able to validate the
message immediately. However, since at least one honest node receives each intermediate digest,
it will forward the digest. This guarantees that all the node will have all the correct intermediate
digests.

In Section 6.2, we show that if an honest node starts the IDA-Gossip protocol for message M in
a committee, all honest nodes in that committee will receive M correctly with high probability. We
also show that, using sparsification, it suffices to send each intermediate digest to a number of node
sublinear in the depth of the tree. This guarantees that all nodes can verify the message with high
probability.

4.3.2 Remarks on Synchronous Consensus

In RapidChain, we use a variant of the synchronous consensus protocol of Ren et al. [60] to achieve
optimal resiliency of f < 1/2 in committees and hence, allow smaller committee sizes with higher to-
tal resiliency of 1/3 (than previous work [47, 42]). Unlike asynchronous protocols such as PBFT [20],
the protocol of Ren et al. [60] (similar to most other synchronous protocol) is not responsive [56]
meaning that it commits to messages at a fixed rate (usually denoted by ∆) and thus, its speed is
independent of the actual delay of the network.

Most committee-based protocols (such as [4]) run a PBFT-based intra-committee consensus
protocol, and hence, are responsive within epochs. However, this often comes at a big cost that
almost always results in significantly poor throughput and latency, hindering responsiveness anyway.
Since asynchronous consensus requires t < n/3, one needs to assume a total resiliency of roughly
1/5 or less to achieve similar committee size and failure probability when sampling a committee
with 1/3 resiliency (see Figure 7). Unfortunately, increasing the total resiliency (e.g., to 1/4)
will dramatically increase the committee size (e.g., 3-4x larger) making intra-committee consensus
significantly inefficient.

In RapidChain, we use our synchronous consensus protocol to agree only on a digest of the block
being proposed by one of the committee members. As a result, the rest of our protocol can be
run over partially-synchronous channels with optimistic timeouts to achieve responsiveness (similar
to [42]). In addition, since the synchronous consensus protocol is run among only a small number
of nodes (about 250 nodes), and the size of the message to agree is small (roughly 80 bytes), the
latency of each round of communication is also small in practice (about 500ms – see Figure 4–left)
resulting in a small ∆ (about 600ms) and a small epoch latency.

To better alleviate the responsiveness issue of synchronous consensus, RapidChain runs a pre-
scheduled consensus among committee members about every week to agree on a new ∆ so that the
system adjusts its consensus speed with the latest average delay of the network. While this does
not completely solve the responsiveness problem, it can make the protocol responsive to long-term,
more robust changes of the network as technology advances.

Another challenge in using a synchronous consensus protocol happens in the cross-shard trans-
action scenario, where a malicious leader can deceive the input committee with a transaction that
has been accepted by some but not all honest members in the output committee. This can happen
because, unlike asynchronous consensus protocols such as PBFT [20] that proceed in an event-driven
manner, synchronous consensus protocols proceed in fixed rounds, and hence, some honest nodes
may terminate before others with a “safe value” that yet needs to be accepted by all honest nodes
in future iterations before a transaction can be considered as committed.

14

4.3.3 Protocol Details

At each iteration i, each committee picks a leader randomly using the epoch randomness. The leader
is responsible for driving the consensus protocol. First, the leader gathers all the transactions it
has received (from users or other committees) in a block Bi . The leader gossips the block using
IDA-gossip and creates the block header Hi that contains the iteration number as well as the root
of the Merkle tree from IDA-Gossip. Next, the leader initiates consensus protocol on Hi . Before
describing the consensus protocol, we remark that all the messages that the leader or other nodes
send during the consensus is signed by their public key and thus the sender of the message and its
integrity is verified.

Our consensus protocol consists of four synchronous rounds. First, the leader gossips a messages
containing Hi and a tag in the header of the message that the leader sets it to propose. Second, all
other nodes in the network echo the headers they received from the leader, i.e., they gossip Hi again
with the tag echo. This step ensures that all the honest nodes will see all versions of the header that
other honest nodes received in the first round. Thus, if the leader equivocates and gossips more
than one version of the message, it will be noticed by the honest nodes. In the third round, if an
honest node receives more than one version of the header for iteration i, it knows that the leader is
corrupt and will gossip H ′i with the tag pending, where H ′i contains a null Merkle root and iteration
number i.

Finally, in the last round, if an honest node receives mf + 1 echoes of the same and the only
header Hi for iteration i, it accepts Hi and gossips Hi with the tag accept along with all the mf + 1
echoes of Hi . The mf + 1 echoes serve as the proof of why the node accepts Hi . Clearly, it is
impossible for any node to create this proof if the leader has not gossiped Hi to at least one honest
node. If an honest node accepts a header, then all other honest nodes either accept the same header
or they reject any header from the leader. In the above scenario, if the leader is corrupt, then some
honest nodes reject the header and tag it as pending.

Definition 1 (Pending Block). A block is pending at iteration i if it is proposed by a leader at some
iteration j before i, while there are honest nodes that have not accepted the block header at iteration
i.

Since less than m/2 of the committee members are corrupt, the leader will be corrupt with a
probability less than 1/2. Thus, to ensure a block header gets accepted, two leaders have to propose
it in expectation. One way to deal with this issue is to ask the leader of the next iteration to propose
the same block again if it is still pending. This, however, reduces the throughput by roughly half.

4.3.4 Improving Performance via Pipelining

RapidChain allows a new leader to propose a new block while re-proposing the headers of the pending
blocks. This allows RapidChain to pipeline its consensus iterations, maximizing its throughput.
Since the consensus is happening during multiple iterations, we let nodes count votes for the header
proposed in each iteration to determine if a block is pending or accepted. The votes can be permanent
or temporary relative to the current iteration. If a node gossips an accept for header Hj at any
iteration i ≥ j, its permanent vote for the header of iteration j is Hj . If the node sends two accepts
for two different headers Hj and H ′j , then the honest nodes will ignore the vote.

If a node sends an echo for Hj at any iteration i ≥ j, its temporary vote is Hj in iteration i.
To accept a header, a node requires at least mf + 1 votes (permanent or temporary for the current
iteration). If a node accepts a header, it will not gossip more headers since all nodes already know its
vote. This will protect honest nodes against denial-of-service attacks by corrupt leaders attempting
to force them echo a large number of non-pending blocks.

15

UTXO State

TX1:row2
TX5:row6
TX7:row3
TX8:row2

UTXO State

TX1:row2
TX7:row3
TX9:row1
TX9:row2

Transaction (ID=TX9)
Input Signature
TX5:row6 67a8b7635789
TX8:row2 8774bb84274c

Output
TX9:row1
TX9:row2

Figure 2: UTXO states before and after a transaction

It is left to describe how the leader proposes a header for a pending block even if some honest
nodes might have already accepted a value for it. A new proposal is safe if it does not conflict with
any accepted value with a correct proof, if there is any. Thus, at iteration i, for all pending block
headers, the leader proposes a safe value. For a new block, any value is considered safe while for
a pending block of previous iterations, the value is safe if and only if it has a correct proof of at
least mf + 1 votes (permanent or temporary from iteration i − 1). If there is no value with enough
votes, then any value is safe. In Section 6.3, we prove that our consensus protocol achieves safety
and liveness in a committee with honest majority.

4.4 Cross-Shard Transactions

In this section, we describe a mechanism by which RapidChain reduces the communication, compu-
tation, and storage requirement of each node by dividing the blockchain into partitions each stored
by one of the committees. While sharding the blockchain can reduce the storage overhead of the
blockchain, it makes the verification of transactions challenging, because the inputs and outputs of
each transaction might reside in multiple committees.

Similar to Bitcoin, each transaction in RapidChain has a unique identity, a list of inputs (depicted
by their identities), and a list of outputs that is shown by the transaction ID and their row number
(see Figure 2). All inputs to a transaction must be unspent transaction outputs (UTXOs) which are
unused coins from previous transactions. The outputs of the transaction are new coins generated
for the recipients of the exchanged money. After receiving a transaction, the nodes verify if a
transaction is valid by checking (1) if the input is unspent; and (2) if the sum of outputs is less than
the sum of the inputs. The nodes add the valid transaction to the next block they are accepting.
RapidChain partitions the transactions based on their transaction ID among the committees which
will be responsible for storing the transaction outputs in their UTXO databases. Each committee
only stores transactions that have the committee ID as their prefix in their IDs.

Let tx denote the transaction sent by the user. In the verification process, multiple committees
may be involved to ensure all the input UTXOs to tx are valid. We refer to the committee that
stores tx and its possible UTXOs as the output committee, and denote it by Cout. We refer to
the committees that store the input UTXOs to tx as the input committees, and denoted them by
C(1)in , . . . ,C

(N)
in .

To verify the input UTXOs, OmniLedger [42] proposes that the user obtain a proof-of-acceptance
from every input committee and submit the proof to the output committee for validation. If each
input committee commits to tx (and marks the corresponding input UTXO as "spent") indepen-
dently from other input committees, then tx may be committed partially, i.e., some of its inputs
UTXOs are spent while the others are not. To avoid this situation and ensure transaction atomicity,
OmniLedger takes a two-phase approach, where each input committee first locks the corresponding
input UTXO(s) and issues a proof-of-acceptance, if the UTXO is valid. The user collects responses
from all input committees and issues an “unlock to commit”.

While this allows the output committee to verify tx independently, the transaction has to be

16

gossiped to the entire network and one proof needs to be generated for every transaction, incurring
a large communication overhead. Another drawback of this scheme is that it depends on the user
to retrieve the proof which puts extra burden on typically lightweight user nodes.

In RapidChain, the user does not attach any proof to tx. Instead, we let the user communicate
with any committee who routes tx to the output committee via the inter-committee routing protocol.
Without loss of generality, we assume tx has two inputs I1, I2 and one output O. If I1, I2 belong to
different committees other than Cout, then the leader of Cout, creates three new transactions: For
i ∈ {1, 2}, txi with input Ii and output I ′i , where |I

′
i | = |Ii | (i.e., the same amounts) and I ′i belongs to

Cout. tx3 with inputs I ′1 and I ′2 and output O. The leader sends txi to Ci
in via the inter-committee

routing protocol, and Ci
in adds txi to its ledger. If txi is successful, Ci

in sends I ′i to Cout. Finally, Cout
adds tx3 to its ledger.

Batching Verification Requests. At each round, the output committee combines the transactions
that use UTXOs belonging to the same input committee into batches and sends a single UTXO
request to the input committee. The input committee checks the validity of each UTXO and sends
the result of the batch to the output committee. Since multiple UTXO requests are batched into
the same request, a result can be generated for multiple requests at the input committee.

4.5 Inter-Committee Routing

RapidChain requires a routing scheme that enables the users and committee leaders to quickly
locate to which committees they should send their transactions.

Strawman Scheme. One approach is to require every node to store the network information of
all committee members in the network. This allows every node to quickly locate the IP addresses
of members of any committee in constant time. Then, nodes can create a connection to members
of the target committee and gossip among them. However, this requires every node to store the
network information about all committee members that compromise privacy and simplify the denial
of service attack. Moreover, in practice each node should connect to large number of nodes during
his life time which cannot scale for thousands of nodes in the network.

A different solution is to have a dedicated committee (e.g., the reference committee) to be
responsible for transaction routing. Every user will obtain network information from reference
committee. This approach offers efficient routing, which takes only one communication round.
However, reference committee becomes a centralized hub of the network that needs to handle a
large amount of communication and thus will be a likely bottleneck.

Routing Overlay Network. To construct the routing protocol in RapidChain, we use ideas from
the design of the routing algorithm in Kademlia [48]. In Kademlia, each node in the system is
assigned an identifier and there is a metric of distance between identifiers (for example, the Hamming
distance of the identifiers). A node stores information about all nodes which are within a logarithmic
distance. When a node wants to send a message to another node in the system it identifies the node
among its neighbors (which it stores locally) that is closest to the destination node’s Kademlia ID
(or KID) and it asks it to run recursively the discovery mechanism. This enables node discovery
and message routing in logn steps. We refer the reader to Section 2 of [48] for more details about
the Kademlia routing protocol.

We employ the Kademlia routing mechanism in RapidChain at the level of committee-to-
committee communication. Specifically, each RapidChain committee maintains a routing table
of logn records which point to logn different committees which are distance 2i for 0 ≤ i ≤ logn − 1

17

20

21

22

20

21

22

C3 C4 C5 C6 C7C2C1C0

0x000 0x001 0x010 0x011 0x100 0x101 0x110 0x111

21
22

C3 C4 C5 C6 C7C2C1C0

0x000 0x001 0x010 0x011 0x100 0x101 0x110 0x111

20

Figure 3: (Left) Each committee in RapidChain maintains a routing table containing logn other committees.
(Right) Committee C0 wants to locate committee C7 (via C4 and C6) responsible for transactions with prefix
0x111.

away (see Figure 3 for an example). More specifically, each node stores information about all mem-
bers of its committee as well as about log log(n) nodes in each of the logn closest committees to its
own committee. Each committee-to-committee message is implemented by having all nodes in the
sender committee send the message to all nodes they know in the receiver committee. Each node
who receives a message invokes the IDA-gossip protocol to send the message to all other members
of its committee.

When a user wants to submit a transaction, it sends the transaction to any arbitrary RapidChain
node who will forward it to the corresponding committee via the Kademlia routing mechanism.
We present in Figure 3 an example of the routing protocol initiated by committee C0 to request
information for committee C7.

4.6 Committee Reconfiguration

Protocol 1 presents our reconfiguration protocol. In the following, we describe the core techniques
used in this protocol.

4.6.1 Offline PoW

RapidChain relies on PoW only to protect against Sybil attacks by requiring every node who wants
to join or stay in the protocol to solve a PoW puzzle. In each epoch, a fresh puzzle is generated
based on the epoch randomness so that the adversary cannot precompute the solutions ahead of the
time to compromise the committees. In RapidChain, all nodes solve a PoW offline without making
the protocol stop and wait for the solution. Thus, the expensive PoW calculations are performed
off the critical latency path.

Since the adversary is bounded to a 1/3 fraction of the total computation power during each
epoch, the fraction of total adversarial nodes is strictly less than n/3. In RapidChain, the reference
committee (CR) is responsible to check the PoW solutions of all nodes. At the start of each epoch,
CR agrees on a reference block consisting of the list of all active nodes for that epoch as well as their
assigned committees. CR also informs other committees by sending the reference block to all other
committees.

4.6.2 Epoch Randomness Generation

In each epoch, the members of the reference committee run a distributed random generation (DRG)
protocol to agree on an unbiased random value. CR includes the randomness in the reference block

18

Protocol 1 Epoch Reconfiguration

1. Random generation during epoch i − 1

(a) The reference committee (CR) runs the DRG protocol to generate a random string ri for the next
epoch.

(b) Members of CR reveal ri at the end of epoch i − 1.

2. Join during epoch i

(a) Invariant: All committees at the start of round i receive the random string ri from CR .
(b) New nodes locally choose a public key PK and contact a random committee C to request a PoW puzzle.
(c) C sends the ri for the current epoch along with a timestamp and 16 random nodes in CR to P .
(d) All the nodes who wish to participate in the next epoch find x such that O = H(timestamp| |PK| |ri | |x) ≤

2γ−d and sends x to Cr .
(e) Cr confirms the solution if it received it before the end of the epoch i.

3. Cuckoo exchange at round i + 1

(a) Invariant: All members of CR participate in the DRG protocol during epoch i and have the value ri+1.
(b) Invariant: During the epoch i, all members of CR receive all the confirmed transactions for the active

nodes of round i + 1.
(c) Members of Cr will create the list of all active nodes for round i +1 and also create A, the set of active

committees, and I , the set of inactive committees.
(d) CR uses ri+1 to assign a committees in A for each new node.
(e) For each committee C, CR evicts a constant number of nodes in C uniformly at random using ri+1 as

the seed.
(f) For all the evicted nodes, CR chooses a committee uniformly at random using ri+1 as the seed and

assigns the node to the committee.
(g) CR adds ri and the new list of all the members and their committees and add it as the first block of

the epoch to the CR ’s chain.
(h) CR gossips the first block to all the committees in the system using the inter-committee routing

protocol.

so other committees can randomize their epochs. RapidChain uses a well-known technique based
on the verifiable secret sharing (VSS) of Feldman [30] to generate unbiased randomness within the
reference committee.

Let Fp denote a finite field of prime order p, m denote the size of the reference committee, and r

denote the randomness for the current epoch to be generated by the protocol. For all i ∈ [m], node
i chooses ρi ∈ Fp uniformly at random and VSS-shares it to all other node. Next, for all j ∈ [m],
let ρ1j , ..., ρmj be the shares node j receives from the previous step. Node j computes its share of r
by calculating

∑m
l=1 ρl j . Finally, nodes exchange their shares of r and reconstruct the result using

the Lagrange interpolation technique [35]. The random generation protocol consists of two phases:
sharing and reconstruction. The sharing phase is more expensive in practice but is executed in
advance before the start of the epoch.

Any new node who wishes to join the system can contact any node in any committees at any
time and request the randomness of this epoch as a fresh PoW puzzle. The nodes who solve the
puzzle will send a transaction with their solution and public key to the reference committee. If the
solution is received by the reference committee before the end of the current epoch, the solution is
accepted and the reference committee adds the node to the list of active nodes for the next epoch.

19

4.6.3 Committee Reconfiguration

Partitioning the nodes into committees for scalability introduces a new challenge when dealing with
churn. Corrupt nodes could strategically leave and rejoin the network, so that eventually they can
take over one of the committees and break the security guarantees of the protocol. Moreover, the
adversary can actively corrupt a constant number of uncorrupted nodes in every epoch even if no
nodes join/rejoin.

One approach to prevent this attack is to re-elect all committees periodically faster than the
adversary’s ability to generate churn. However, there are two drawbacks to this solution. First,
re-generating all of the committees is very expensive due to the large overhead of the bootstrapping
protocol (see Section 5). Second, maintaining a separate ledger for each committee is challenging
when several committee members may be replaced in every epoch.

To handle this problem, RapidChain uses a modified version of the Cuckoo rule [8, 62], which we
refer to as the bounded Cuckoo rule, to re-organize only a subset of committee members during the
reconfiguration event at the beginning of each epoch. This modification is to ensure that committees
are balanced with respect to their sizes as nodes join or leave the network. In the following, we first
describe the basic Cuckoo rule algorithm and then, proceed to the bounded cuckoo rule.

Cuckoo Rule. To map the nodes to committees, we first map each node to a random position in
[0, 1) using a hash function. Then, the range [0, 1) is partitioned into k regions of size k/n, and a
committee is defined as the group of nodes that are assigned to O(logn) regions, for some constants k.
Awerbuch and Scheideler [8] propose the Cuckoo rule as a technique to ensure the set of committees
created in the range [0, 1) remain robust to join-leave attacks. Based on this rule, when a node wants
to join the network, it is placed at a random position x ∈ [0, 1), while all nodes in a constant-sized
interval surrounding x are moved (or cuckoo’ed) to new random positions in (0, 1]. Awerbuch and
Scheideler prove that given ϵ < 1/2−1/k in a steady state, all regions of size O(logn)/n have O(logn)
nodes (i.e., they are balanced) of which less than 1/3 are faulty (i.e., they are correct), with high
probability, for any polynomial number of rounds.

A node is called new while it is in the committee where it was assigned when it joined the system.
At any time after that, we call it an old node even if it changes its committee. We define the age
of a k-region as the amount of time that has passed after a new node is placed in that k-region. We
define the age of a committee as the sum of the ages of its k-regions.

Bounded Cuckoo Rule. At the start of each epoch, once the set of active nodes who remain in the
protocol for the new epoch is defined, the reference committee, CR , defines the set of the largestm/2
committees (who have more active members) as the active committee set, which we denote by A.
We refer to the remaining m/2 committees with smaller sizes as the inactive committee set, denoted
by I. Active committees accept new nodes that have joined the network in the previous epoch, as
new members of the committee. However, inactive committees only accept the members who were
part of the network before, to join them. Both active and inactive committees fulfill any other
responsibilities they have in the protocol (such as consensus on blocks and routing transaction)
indifferently. For each new node, the reference committee, CR , chooses a random committee Ca from
the set A and adds the new node to Ca . Next, CR evicts (cuckoos) a constant number of members
from every committee (including Ca) and assigns them to other committees chosen uniformly at
random from I.

In Section 6.5, we show two invariant properties which are maintained for each committee during
the reconfiguration protocol: At any moment, the committees are balanced and honest. The first
property ensures a bounded deviation in the sizes of the committees. The second property ensures
that each committee maintains its honest majority.

20

4.6.4 Node Initialization and Storage

Once a node joins a committee, it needs to download and store the state of the new committee.
We refer to this as the node initialization process. Moreover, as transactions are processed by the
committee, new data has to be stored by the committee members to ensure future transactions can
be verified. While RapidChain shards the global ledger into smaller ones each maintained by one
committee, the initialization and storage overhead can be large and problematic in practice due to
the high throughput of the system. One can employ a ledger pruning/checkpointing mechanism,
such as those described in [45, 42], to significantly reduce this overhead. For example, a large
percentage of storage is usually used to store transactions that are already spent.

In Bitcoin, new nodes download and verify the entire history of transactions in order to find/verify
the longest (i.e., the most difficult) chain1. In contrast, RapidChain is a BFT-based consensus
protocol, where the blockchain maintained by each committee grows based on member votes rather
than the longest chain principle [31]. Therefore, a new RapidChain node initially downloads only
the set of unspent transactions (i.e., UTXOs) from a sufficient number of committee members in
order to verify future transactions. To ensure the integrity of the UTXO set received by the new
node, the members of each committee in RapidChain record the hash of the current UTXO set in
every block added to the committee’s blockchain.

5 Evaluation

Experimental Setup. We implement a prototype of RapidChain in Go2 to evaluate its performance
and compare it with previous work. We simulate networks of up to 4,000 nodes by oversubscribing a
set of 32 machines each running up to 125 RapidChain instances. Each machine has a 64-core Intel
Xeon Phi 7210 @ 1.3GHz processor and a 10-Gbps communication link. To simulate geographically-
distributed nodes, we consider a latency of 100ms for every message and a bandwidth of 20Mbps
for each node. Similar to Bitcoin Core, we assume each node in the global P2P network can accept
up to 8 outgoing connections and up to 125 incoming connections. The global P2P overlay is only
used during our bootstrapping phase. During consensus epochs, nodes communicate through much
smaller P2P overlays created within every committee, where each node accepts up to 16 outgoing
connections and up to 125 incoming connections.

Unless otherwise mentioned, all numbers reported in this section refer to the expected behavior
of the system when less than half of all nodes are corrupted. In particular, in our implementation
of the intra-consensus protocol of Section 4.3, the leader gossips two different messages in the same
iteration with probability 0.49. Also, in our inter-committee routing protocol, 49% of the nodes do
not participate in the gossip protocol (i.e., remain silent).

To obtain synchronous rounds for our intra-committee consensus, we set ∆ (see Section 3 for
the definition) conservatively to 600ms based on the maximum time to gossip an 80-byte digest to
all nodes in a P2P network of 250 nodes (our largest committee size) as shown in Figure 4 (left).
Recall that synchronous rounds are required only during our consensus protocol to agree on a hash
of the block resulting in messages of up to 80 bytes size including signatures and control bits.

We assume each block of transaction consist of 4,096 transactions, where each transaction consists
of 512 bytes resulting in a block size of 2MB. To implement our IDA-based gossiping protocol to
gossip 2-MB blocks within committees, we split each block into 128 chunks and use the Jerasure
library [3] to encode messages using erasure codes based on Reed-Solomon codes [59] with the

1Bitcoin nodes can, in fact, verify the longest chain by only downloading the sequence of block headers via a method called
simplified payment verification described by Nakamoto [54].

2https://golang.org

21

275

325

375

425

475

525

100 125 150 175 200 225 250
La

ten
cy

 (m
s)

Committee Size

Maximum
Average
Median

7384

8.84

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

128 256 512 1024 2048 4096 8192

La
ten

cy
 (s

ec
)

Tr
an

sa
cti

on
s

pe
r S

ec
on

d

Block Size (KB)

Throughput
Latency

Figure 4: Latency of gossiping an 80-byte message for different committee sizes (left); Impact of block size
on throughput and latency (right)

decoding algorithm of Berlekamp and Welch [10].

Choice of Block Size. To determine a reasonable block size, we measure the throughput and
latency of RapidChain with various block sizes between 512KB and 8,192KB for our target network
size of 4,000 nodes. As shown in Figure 4 (right), larger block sizes generally result in higher
throughput but also in higher confirmation latency. To obtain a latency of less than 10 seconds
common in most mainstream payment systems while obtaining the highest possible throughput,
we set our block size to 2,048KB, which results in a throughput of more than 7,000 tx/sec and a
latency of roughly 8.7 seconds.

Throughput Scalability. To evaluate the impact of sharding, we measure the number of user-
generated transactions processed per second by RapidChain as we increase the network size from
500 to 4,000 nodes. As the network size increases, we choose larger committee sizes so that the
failure probability of each epoch is at most 2 · 10−6 (i.e., protocol fails after more than 1,300 years)
in each experiment. For our target network size of 4,000, we consider a committee size of 250 which
results in an epoch failure probability of less than 6 · 10−7 (i.e., time-to-failure of more than 4,580
years). As shown in Figure 5 (left), since the required committee sizes increase slowly as n increases,
the total number of shards still increases with the network size. Moreover, doubling the network size
increases the capacity of RapidChain by 1.5-1.7 times. This is an important measure of how well
the system can scale up its processing capacity with its main resource, i.e., the number of nodes.

We also evaluate the impact of our pipelining technique for intra-committee consensus (as de-

22

scribed in Section 4.3) by comparing the throughput with pipelining (i.e., 7,384 tx/sec) with the
throughput without pipelining (i.e., 5,287 tx/sec) for n = 4, 000, showing an improvement of about
1.4x.

Transaction Latency. Wemeasure the latency of processing a transaction in RapidChain using two
metrics: confirmation latency and user-perceived latency. The former measures the delay between
the time that a transaction is included in a block by a consensus participant until the block is
added to a ledger and its inclusion can be confirmed by any (honest) participant. In contrast,
user-perceived latency measures the delay between the time that a user sends a transaction, tx, to
the network until the time that tx can be confirmed by any (honest) node in the system.

Figure 5 (right) shows both latency values measured for various network sizes. While the client-
perceived latency is roughly 8 times more than the confirmation latency, both latencies remain about
the same for networks larger than 1,000 nodes. In comparison, Elastico [47] and OmniLedger [42]
report confirmation latencies of roughly 800 seconds and 63 seconds for network sizes of 1,600 and
1,800 nodes respectively.

Reconfiguration Latency. Figure 6 (left) shows the latency overhead of epoch reconfiguration
which, similar to [42], happens once a day. We measure this latency in three different scenarios,
where 1, 5, or 10 nodes join RapidChain for various network sizes and variable committee sizes
(as in Figure 5 (left)). The reconfiguration latency measured in Figure 6 (left) includes the delay
of three tasks that have to be done sequentially during any reconfiguration event: (1) Generating
epoch randomness by the reference committee; (2) Consensus on a new configuration block proposed
by the reference committee; and (3) Assigning new nodes to existing committee and redistributing
a certain number of the existing members in the affected committees. For example, in our target
network of 4, 000 nodes, out of roughly 372 seconds for the event, the first task takes about 4.2
seconds (1%), the second task takes 71 seconds (19%), and the third task takes 297 seconds (80%).
For other network sizes, roughly the same percentages are measured.

As shown in Figure 6 (left), the reconfiguration latency increases roughly 1.5 times if 10 nodes
join the system rather than one node. This is because when more nodes join the system, more nodes
are cuckooed (i.e., redistributed) among other committees consequently. Since the churn of different
nodes in different committees happen in parallel, the latency does not increase significantly with
more joins. Moreover, the network size impacts the reconfiguration latency only slightly because
churn mostly affects the committees involved in the reconfiguration process. In contrast, Elastico [47]
cannot handle churn in an incremental manner and requires re-initialization of all committees. For a
network of 1,800 nodes, epoch transition in OmniLedger [42] takes more than 1,000 seconds while it
takes less than 380 second for RapidChain. In practice, OmniLegder’s epoch transition takes more
than 3 hours since the distributed random generation protocol used has to be repeated at least 10
times to succeed with high probability. Finally, it is unclear how this latency will be affected by the
number of nodes joining (and hence redistributing node between committees) in OmniLedger.

Impact of Cross-Shard Batching. One of the important features of RapidChain is that it allows
batching cross-shard verification requests in order to limit the amount of inter-committee communi-
cations to verify transactions. This is especially crucial when the number of shards is large because,
as we show in Section 6.7, in our target network size of 4,000 nodes with 16 committees, roughly
99.98% of all transactions are expected to be cross-shard, meaning that at least one of every trans-
action’s input UTXOs is expected to be located in a shard other than the one that will store the
transaction itself. Since transactions are assigned to committees based on their randomly-generated
IDs, transactions are expected to be distributed uniformly among committees. As a result, the size
of a batch of cross-shard transactions for each committee for processing every block of size 2MB

23

1548
2423

3323

4676 5127
6030

6933 7384

0
2
4
6
8
10
12
14
16
18

0
1000
2000
3000
4000
5000
6000
7000
8000

500
[145]

1000
[175]

1500
[190]

2000
[200]

2500
[225]

3000
[225]

3500
[230]

4000
[250]

Nu
m

be
r o

f S
ha

rd
s

Tr
an

sa
cti

on
s

pe
r S

ec
on

d

Number of Nodes
[Committee Size]

Throughput Number of Shards

32.2

67.9 69.1 69.8 70.0 70.4 70.6 70.7

8.04

8.49
8.64 8.72 8.75 8.80 8.83 8.84

7.8

8.1

8.4

8.7

9.0

9.3

9.6

9.9

0

10

20

30

40

50

60

70

80

500 1000 1500 2000 2500 3000 3500 4000

Co
nf

irm
ati

on
 L

ate
nc

y
(se

c)

Us
er

-P
er

ce
ive

d
La

ten
cy

 (s
ec

)

Number of Nodes

User-Perceived Latency
Confirmation Latency

Figure 5: Throughput scalability of RapidChain (left); Transaction latency (right)

is expected to be equal to 2 MB/16 = 128 KB. Figure 6 (right) shows the impact of batching
cross-shard verifications on the throughput of RapidChain for various network sizes.

Storage Overhead. We measure the amount of data stored by each node after 1,250 blocks (about
5 million transactions) are processed by RapidChain. To compare with previous work, we estimate
the storage required by each node in Elastico and OmniLedger based on their reported throughput
and number of shards for similar network sizes as shown in Table 2.

Protocol Network
Size

Storage

Elastico [47] 1,600 nodes 2,400MB (esti-
mated)

OmniLedger [42] 1,800 nodes 750MB (estimated)
RapidChain 1,800 nodes 267MB
RapidChain 4,000 nodes 154MB

Table 2: Storage required per node after processing 5M transactions without ledger pruning

Overhead of Bootstrapping. We measure the overheads of our bootstrapping protocol to setup
committees for the first time in two different experiments with 500 and 4,000 nodes. The measured
latencies are 2.7 hours and 18.5 hours for each experiment respectively. Each participant in these

24

0
50

100
150
200
250
300
350
400

500 1000 1500 2000 2500 3000 3500 4000
La

ten
cy

 (s
ec

)

Number of Nodes

1 node 5 nodes 10 nodes

1.6x

2.5x
3.3x

4.2x
4.6x

5.5x
6.3x 6.6x

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

500 1000 1500 2000 2500 3000 3500 4000

In
cr

ea
se

 in
 Th

ro
ug

hp
ut

Number of Nodes

Figure 6: Reconfiguration latency when 1, 5, or 10 nodes join each committee (left); Impact of batching
cross-shard verifications (right)

two experiments consumes a bandwidth of roughly 29.8GB and 86.5GB respectively. Although
these latency and bandwidth overheads are substantial, we note that the bootstrapping protocol
is executed only once, and therefore, its overhead can be amortized over several epochs. Elastico
and OmniLedger assume a trusted setup for generating an initial randomness, and therefore, do not
report any measurements for such a setup.

6 Security and Performance Analysis

6.1 Epoch Security

We use the hypergeometric distribution to calculate the failure probability of each epoch. The
cumulative hypergeometric distribution function allows us to calculate the probability of obtaining
no less than x corrupt nodes when randomly selecting a committee of m nodes without replacement
from a population of n nodes containing at most t corrupt nodes. Let X denote the random variable
corresponding to the number of corrupt nodes in the sampled committee. The failure probability
for one committee is at most

Pr
[
X ≥ bm/2c

]
=

m∑
x= bm/2c

(t
x

) (n−t
m−x

)(n
m

) .

Note that one can sample a committee with or without replacement from the total population

25

of nodes. If the sampling is done with replacement (i.e., committees can overlap), then the failure
probability for one committee can be calculated from the cumulative binomial distribution function,

Pr
[
X ≥ bm/2c

]
=

m∑
x=0

(
m

x

)
f x (1 − f)m−x ,

which calculates the probability that no less than x nodes are corrupt in a committee of m nodes
sampled from an infinite pool of nodes, where the probability of each node being corrupt is f = t/n.
If the sampling is done without replacement (as in RapidChain), then the binomial distribution can
still be used to approximate (and bound) the failure probability for one committee. However, when
the committee size gets larger relative to the population size, the hypergeometric distribution yields
a better approximation (e.g., roughly 3x smaller failure probability for n = 2000,m = 200, t < n/3).

Unlike the binomial distribution, the hypergeometric distribution depends directly on the total
population size (i.e., n). Since n can change over time in an open-membership network, the failure
probability might be affected consequently. To maintain the desired failure probability, each com-
mittee in RapidChain runs a consensus in pre-determined intervals, e.g., once a week, to agree on a
new committee size, based on which, the committee will accept more nodes to join the committee
in future epochs.

Figure 7 shows the probability of failure calculated using the hypergeometric distribution to
sample a committee (with various sizes) from a population of 2,000 nodes for two scenarios: (1)
n/3 total resiliency and n/2 committee resiliency (as in RapidChain); and (2) n/4 total resiliency
and n/3 committee resiliency (as in previous work [47, 42]). As shown in the figure, the failure
probability decreases much faster with the committee size in the RapidChain scenario.

To bound the failure probability of each epoch, we calculate the union bound over k = n/m

committees, where each can fail with the probability pcommittee calculated previously. In the first
epoch, the committee election procedure (from the bootstrapping protocol) can fail with probability
pbootstrap ≤ 2−26.36. The random generation protocol executed by the reference committee at the
beginning of each epoch is guaranteed to generate an unbiased coin with probability one, and the
consensus protocol executed by each committee is guaranteed to terminate with probability one.
By setting n = 4, 000,m = 250, and t < n/3, we have pcommittee < 3.7 · 10−8. Therefore, the failure
probability of each epoch is

pepoch < pbootstrap + k · pcommittee < 6 · 10−7.

Ideally, we would hope that the probability that the adversary taking t faction of blocks in
the epoch, and an honest miner takes 1 − t fraction of the blocks. However, it is not the case for
committee-based sharding protocols such as RapidChain. The increase in the adversary’s effective
power comes from the fact that the upper-bound on the fraction of adversarial ids will increase
inside each shard comparing to the whole system. Thus, we define and calculate the effective power
of the adversary.

Definition 2. Adversarial effective power. The ratio of the blocks that is created by the adversary
and is added to the chain to the total number of blocks.

Theorem 1. The effective power of the adversary is 1/2; i.e., the adversary can create half of the
blocks in the system.

The proof of this lemma follows from the choices of the target failure probability and committee
sizes which we discussed in this section.

26

1E-08
1E-07
1E-06
1E-05
1E-04
1E-03
1E-02
1E-01
1E+00

0 20 40 60 80 100 120 140 160 180 200 220 240
Fa

ilu
re

Pr
ob

ab
ilit

y

Committee Size

1/3 to 1/2 (RapidChain)
1/4 to 1/3 (Previous work)
1/5 to 1/3

Figure 7: Log-scale plot of the probability of failure to sample one committee from a population of 2,000
nodes in RapidChain and previous work [47, 42] using the hypergeometric distribution.

6.2 Gossiping Guarantees

RapidChain creates a well-connected random graph for gossiping between nodes on a committee.
This guarantees that a message gossiped by any honest node will eventually reach all other honest
nodes and the gossiping delay, ∆, can be bounded. In the following, we show that splitting a message
into chunks, as described in Section 4.3, does not violate the above gossiping guarantee with high
probability.

Lemma 1. The probability that a message is not delivered to all honest nodes after it is gossiped
using IDA-Gossip without sparsification is at most 0.1.

Proof. Let d denote the degree of every committee member, i.e., the number of neighbors that are
chosen uniformly at random. Using the hypergeometric distribution, we find a threshold ζ such
that the probability of having more than ζ fraction corrupt neighbors is at most 0.1. For example,
for m = 200 and f < 1/2, we set ζ = 0.63. The sender splits the message into κ chunks and gives a
unique set of size κ/d chunks to each of its neighbors so they can gossip the chunks on its behalf.
Thus, at the end of the gossiping protocol, each honest node will receive at least (1 − ζ)κ correct
chunks. Finally, an error-correction coding scheme can be used at the receiver to correct up to a ζ
fraction corrupted chunks and reconstruct the message.

Next, we show that the process of sparsification is not going to change the correctness and
security of the gossiping protocol and it increases the probability of failure slightly.

Lemma 2. Assume the gossiper sparisfies all the Merkle tree nodes up to some level i. The probabil-
ity that the message is not received correctly after the gossiping of a big message with sparsification
with parameter s is at most 0.1 + 2−(s−i−1), where s is the size of the subset of nodes whom gossiper
sends each sparsified node and can be set based on the the desired failure probability (as a function
of the importance of the message).

Proof. The reconstruction stage fails if there is a node in the tree for which the hash at that node
is distributed to only corrupt nodes. We will call a tree node sparsified if the hash T (Mi ,Mj) at the
node is not sent along with all of the leaves that require that hash for verification of the block. We
will sparisfy all nodes up to some level i. The sender can calculate s, which is the size of the subset
of nodes whom he sends each sparsified node to guarantee that with probability at least 2−c , the
node is sent to at least one honest node. Let l(x) count the number of leaf nodes in the sub-tree
rooted at node x , and u(x) count the number of corrupt nodes in the sub-tree rooted at node x .

27

If a node is distributed to s nodes at random, the probability that only corrupt nodes receive
the node is at most f s . Therefore, taking the union bound over all 2i+1 − 1 nodes and by setting
f < 1/2,

(2i+1 − 1)f s < 2i+1 f s < 2i+1−s .

The difference between sparsification and non-sparsification is that by sparsification, the gossiper
decrease his chance of a successful gossip slightly but in return puts less communication burden
on the nodes and network. Since the gossip of the blocks are crucial to the system, we do not
use sparsification for them. However, users can use sparsification for their large transactions if
the transaction is not time-sensitive. In case the transaction fails to be gossiped correctly due
to sparsification, the user can re-send the Merkle tree nodes later which will happen with small
probability.

6.3 Security of Intra-Committee Consensus

Recall that honest nodes always collectively control at least n− t of all identities at any given epoch.
We first prove safety assuming all the ids are fixed during one epoch and the epoch randomness is
unbiased.

Theorem 2. The protocol achieves safety if the committee has no more than f < 1/2 fraction of
corrupt nodes.

Proof. We prove safety for a specific block header proposed by the leader at iteration i. Suppose
node P is the first honest node to accept a header Hi for i. Thus, it echoes Hi before accepting it
at some iteration j ≥ i. If another honest replica accepts H ′i , there must be a valid accept message
with a proof certificate on H ′i at some block iteration j ′ ≥ i. However, in all the rounds of iteration i

or all iterations after i, no leader can construct a safe proposal for a different header other than Hi

since he cannot obtain enough votes from honest nodes on a value that is not safe and thus create a
mf + 1 proof. Finlay, note that due to correctness of the IDA-Gossiping, it is impossible to finalized
a Merkle root of a block that is associates with two different blocks.

We define liveness in our setting as finality for one block, i.e., the protocol achieves liveness if it
can accepts all the proposed blocks within a bounded time.

Theorem 3. The protocol achieves liveness if the committee has less than mf corrupt nodes.

Proof. First note that all the messages in the system are unforgeable using digital signatures. We
first show that all the honest nodes will accept all the pending blocks, or they have accepted them
with the safe value before, as soon as the leader for the current block height is honest. Since, the
leaders are chosen randomly and the randomness is unbiased, each committee will have an honest
leader every two rounds in expectation. The honest leader will send valid proposals for all the
pending blocks to all nodes that is safe to propose and has a valid proof. Thus, all honest replicas
have either have already accepted the same value or they will accept it since it is safe (see the
theorem for safety). Thus, all honest nodes will vote for the proposed header for all the pending
blocks, subsequently the will receive mf + 1 votes for them since we have mf + 1 honest nodes.
Therefore, all honest nodes have finalized the block at the end of this iteration.

28

Security of Cross-Shard Verification. Without loss of generality, we assume tx has two inputs
I1, I2 and one output O. If the user provides valid inputs, both input committees successfully verify
their transactions and send the new UTXOs to the output committee. Thus, tx3 will be successful.
If both inputs are invalid, both input committees will not send I ′i , and as a result tx3 will not be
accepted. If I1 is valid but I2 is invalid, then C1

in successfully transfers I ′1 but C2
in will not send I ′2.

Thus, tx3 will not be accepted in Cout. However, I ′1 is a valid UTXO in the output committee and
the user can spend it later. The output committee can send the resulting UTXO to the user.

6.4 Security of Bootstrapping

Theorem 4. Suppose there are n nodes and a constant fraction, 1/3 of these nodes are corrupt. At
the end of the RapidChain bootstrapping protocol from Section 4.2, almost all (99 percentile) of the
uncorrupted nodes agree on the random string r0 and consequently on all the sharding committees
with constant probability greater than 0.

Proof. In Lemmas 3 and 4, we present analysis for the the probability of error in the bootstrapping
protocol. The first lemma follows from previous work but we provide it from completeness. Then, we
present a tighter analysis for the protocol in the second lemma that improves the concrete parameters
we need to use for our implementation which give over 20% for large number of parties.

Original Analysis. Recall that L represents the set of parties and R represents the set of groups
selected based on the edges incident to the node from L.

Lemma 3. In a sampler graph with a random assignment of honest parties and adversarial assign-
ment of dishonest parties, the probability that all the formed groups in any subset of size |S | being
corrupted is less than 2e(|L |+ |R |−δ

2dR |S |/2.

Consider two fixed subsets of nodes T ⊆ L and S ⊆ R. Let N denote the number of edges between
T and S. One can imagine T represents the largest coalition of faulty parties and S represents any
subset of groups. Let E(T , S) denote the event that every node in S has more than a |T |

|L | + δ fraction
of its edges incident to nodes in T . The number of edges incident to S is equal to dR |S |. By linearity
of expectation, E[N] = |T |

|L |dR |S |. Suppose that we add the edges to S one-by-one. Let {Xi } denote
a sequence of random variables such that Xi = 1 if and only if the i-th edge is incident to T . The
sequence {Zi = E[N |X0, ...,Xi]} defines a Doob martingale [26, Chapter 5], where Z0 = E[N]. If any
of the trials is altered, N changes by at most one. For some positive δ , the failure event E happens
whenever

N >

(
|T |

|L|
+ δ

)
dR |S | = E[N] + δdR |S |.

By Azuma’s inequality,

Pr
(
E(T , S)

)
= Pr

(
N − E[N] > δdR |S |

)
≤ 2e−δ

2dR |S |/2.

By union bound over all possible subsets T and S,

Pr

(⋃
T ⊆L,S ⊆R

)
≤ 2 |L |2 |R |2e−δ

2dR |S |/2 ≤ 2e(|L |+ |R |−δ
2dR |S |/2. (3)

Tighter Analysis. We now obtain a tighter bound on the failure probability.

Lemma 4. In a sampler graph with a random assignment of honest parties and adversarial assign-
ment of dishonest parties, the probability that all the formed groups in any subset of size |R′ | being
corrupted is less than β2 |L |2 |R |(e−µb (eµb/x)

x + e−µд (eµд/(2x))2x) |R
′ |.

29

Proof. The sampler graph selection process can be seen as the classic balls-and-bins process: |L|dL
balls (parties) are thrown independently and uniformly at random into |R | bins (groups). Without
loss of generality we can assume we first through all dishonest parties (bad balls) then all the honest
parties (good balls).

For a fix committee C, let Xд be a random variable representing the maximum number of dis-
honest parties assigned to C, Xb be a random variable representing the minimum number of honest
parties assigned to C, µд and µb be the expected number of honest and dishonest parties per group
respectively.

It is well known that the distribution of the number of (good/bad) balls in a bin is approximately
Poisson with mean µb = dL |L|/4 and µд = 3dL |L|/4 [53, Chapter 5]. let X̃ and be the Poisson random
variable approximating X . We have µ = E[X] = E[X̃]. We use the following Chernoff bounds from
[53, Chapter 5] for Poisson random variables:

Pr(X̃ ≥ x) ≤ e−µ (eµ/x)x , when x > µ, (4)

Pr(X̃ ≤ x) ≤ e−µ (eµ/x)x , when x < µ . (5)

We consider a group to be good if Xд > x and Xb < x . This is to make sure a good group has
honest majority. Note that this definition is an under-estimation and we do not count some of the
good groups. Based on this definition, a group is bad if Xд ≤ x or Xb ≥ x .

The the probability that a fixed committee being bad is:

e−µb (eµb/x)
x + e−µд (eµд/x)

x . (6)

Now, consider a subset of groups of size |R′ |, the probability that all of them being bad is,
(e−µb (eµb/x)

x + e−µд (eµд/x)
x) |R

′ | .

Since the adversary can choose the bad parties and the bad groups, we use union bound over all
the possible adversarial choices to find the probability that all the groups in any subset of size |R′ |
being corrupted:

Pr

(⋃
T ⊆L,S ⊆R

)
≤ 2 |L |2 |R |(e−µb (eµb/x)

x + e−µд (eµд/x)
x) |R

′ | . (7)

Tighter Bound. Not all the choices of the adversary gives him the same probability of success.
Thus, we can consider strategies that are strictly worst than another strategy and remove them from
the union bound since it is not beneficial for the adversary to choose such strategies. We consider
the following random process:

1. All good parties are assigned randomly to groups.

2. The adversary assign α fraction of all its bad parties to the groups such that the assignment
corrupts maximum number of groups.

3. The adversary assigns remaining 1 − α bad parties such that each party assigned to at least
one good group.

We claim that any strategy who does not follow the previous process i.e. it assigns a bad party
to all bad committees at step (3) is a strictly worst since assigning bad parties to the groups that
are already bad will not increase the chance of adversary to corrupt a new group.

30

Similar to the previous analysis, we can calculate the probability that a set of size |R′ | has only
bad committees in it after throwing all good parties and α fraction of the bad parties that is,

(e−µαb (eµαb/x)
x + e−µд (eµд/x)

x) |R
′ | . (8)

Now, we can calculate the fraction of strategies that the adversary ignores due to the step three
rule,

β =
|R′ |!(|R′ | − logn)!

|R |!(|R | − logn)
. (9)

Thus, in our union bound, we can ignore this fraction,

Pr

(⋃
T ⊆L,S ⊆R

)
≤ β2 |L |2 |R |(e−µb (eµb/x)

x + e−µд (eµд/x)
x) |R

′ | .

6.5 Security of Reconfiguration

We now prove that the reconfiguration protocol that we use maintains the balancing and honesty
properties of the committees. The proof is an extension of the proof in [8]. We first define two
conditions for a committee.

Definition 3 (Honesty). A committee satisfies the honesty condition if the fraction of corrupt nodes
in the committee is strictly less than 1/2.

Definition 4 (Balancing). A committee satisfies the balancing condition if the number of nodes in
the committee is bounded by O(logn).

In the following, we let nodes join and leave one-by-one in each round. Moreover, we assume
that at any time during the protocol, the fraction of corrupt nodes to honest nodes is ϵ. We also
assume the protocol starts from a stable state with n nodes partitioned into m committees which
satisfies the balancing and honesty conditions. Recall that we defined the set of active committees
as the m/2 committees with highest number of nodes in them.

Lemma 5. For any fixed active committee C and at any time, the age of any active committee C

is within (1 ± δ)nc logn2k , with high probability.

Proof. We define yi as the age of k-region called Ri and Y =
∑i=c logn

i=1 yi as the age of C. At any point
during the protocol, half of the committees are active so we choose the region for the new node from
half of the k regions. Thus, Pr [yi = t] = 2k

n (1 −
2k
n)

t−1 is geometrically distributed with probability
2k
n . Thus, E[yi] = n

2k and E[Y] = nc
2k c logn. It is easy to show that Y is concentrated around E[Y],

meaning that Y is between (1 ± δ)E[Y] and we omit the proof here.

Lemma 6. Any k-region in active committees has age at most λ(n/2k) logn.

Proof. The probability that a k-region Ri is evicted at any round is 2k/n since at any round we have
m/2 active committees and as a result half of the k-regions will accept a new join. Conditioned on
the event that the committee does not get inactive during this time, we can assume this probability
is independent of other rounds. Note that this condition considers the worst case scenario since
otherwise the committee gets inactive during this time. Hence, the probability that Ri has age at
least λ(n/2k) logn is (1 − 2k/n)λ(n/k) logn ≤ e−2k/nλ(n/2k) logn = n−λ .

31

Protocol ID Genera-
tion

Bootstrap Consensus Storage per
Node

Elastico [47] O(n2) Ω(n2) O(m2/b + n) O(|B |)

OmniLedger [42] O(n2) Ω(n2) Ω(m2/b + n) O(m · |B |/n)

RapidChain O(n2) O(n
√
n) O(m2/b +m logn) O(m · |B |/n)

Table 3: Complexities of previous sharding-based blockchain protocols

Lemma 7. Any fixed node v in an active committee, it gets replaced at most (1 + δ)λ logn times
within λ(n/2k) logn rounds.

Proof. We prove this lemma conditioned on the fact that the node is placed in an active committee
with probability 1/2, i.e., half of the committees get to be active after one node joins them. This
condition is considers the worst case scenario in which we assume that half of the inactive committees
have numbers of nodes very close to being active in the next round. Let the indicator random
variable zt = 1 if node p is replaced in t , otherwise it is 0. Pr [zt = 1] = 1/22k

n since at any time we
randomly choose a region to evict from all active regions. Let Z =

∑t=λ(n/2k) logn
t=0 zt . We can compute

E[Z] = λ(n/2k)
(
k
n

)
logn = 1/2λ logn. Using the Chernoff bound, we can show that Z < (1 + δ)E[Z]

with high probability.

We state the following lemma from [8] (Lemma 2.8), which we use directly since our construction
will not change the fraction of honest and corrupt nodes in any way from their construction.

Lemma 8. Let t be the maximum number of corrupt nodes at any point in the system. At any time,
a fixed committee has within (1 − t/n)(1 ± δ)c lognk/2 old honest and t

n−t (1 ± δ)c lognk/2 old corrupt
nodes with high probability.

The balancing and honesty properties follow but we omit the details here due to space limitations.

Proof. The proof is similar to the proof of Lemma 2.8 from [8] with different parameters based on
Lemmas 5, 6, and 7.

Theorem 5. At any time during the protocol, all committees satisfy the balancing and honesty
conditions.

Proof. To prove the theorem, it is enough to prove the balancing and honesty properties for any
committee. First note that the number of new nodes in each committee is at most c logn. We also
calculated the number of old nodes in Lemma 8.

• Balancing: The maximum number of nodes in each committee is c logn + c/2(1 +
δ)

(
3 − t

n +
t

n−t k
)
logn and the minimum load is c/2(1 − δ) logn.

• Honesty. Choosing k such that t
n−t < 1− 1/k, any committee has (1− t/n)(1−δ)c lognk/2 honest

and t
n−t (1+δ)c lognk/2 corrupt nodes with high probability. Note that this values are calculated

for the worst case scenario when the adversary targeted the committee of size (c logn)k/n.

6.6 Performance Analysis

We summarize the theoretical analysis of the performance of RapidChain in Table 3.

32

Complexity of Consensus. Without loss of generality, we calculate the complexity of consensus
per transaction. Let tx denote a transaction that belongs to a committee C with size m. First,
the user sends tx to a constant number of RapidChain nodes who route it to C. This imposes a
communication and computation overhead of m log(n/m) = O(m logn). Next, a leader in C drives
an intra-committee consensus, which requires O(m

2

b) communication amortized on the block size, b.
Moreover, with probability 96.3% (see Section 6.7) tx is a cross-shard transaction, and the leader
requires to requests a verification proof from a constant number of committees assuming tx has
constant number of inputs and outputs. The cost of routing the requests and their responses is
O(m logn), and the cost of consensus on the request and response is O(m2/b) (amortized on the
block size due to batching) which happens in every input and output committee. Thus, the total
per-transaction communication and complexity of a consensus iteration is equal to O(m2/b+m logn).

Complexity of Bootstrap Protocol. Assuming a group size of O(
√
n) and O(

√
n) groups, we count

the total communication complexity of our bootstrap protocol as follows. Each group runs the
DRG protocol that requires O(n) communication. Since each group has O(

√
n) nodes, the total

complexity is O(n
√
n). After DRG, a constant number of members from each group will gossip the

result incurring a O(n
√
n) overhead, where O(n) is the cost of each gossip. Since the number of nodes

in the root group is also O(
√
n), its message complexity to generate a randomness and to gossip it

to all of its members for electing a reference committee is O(n).

Storage Complexity. Let |B | denote the size of the blockchain. We divide the ledger among n/m

shards, thus each node stores O(m · |B |/n) amount of data. Note that we store a reference block at
the start of each epoch that contains the list of all of the nodes and their corresponding committees.
This cost is asymptotically negligible in the size of the ledger that each node has to store as long
as n = o(|B |).

6.7 Probability of Cross-Shard Transactions

In this section, we calculate the probability that a transaction is cross-shard, meaning that at least
one of its input UTXOs is located in a shard other than the one that will store the transaction
itself.1 Let tx denote the transaction to verify, k denote the number of committees, u > 0 denote
the total number of input and output UTXOs in tx, and v > 0 denote the number of committees
that stores at least one of the input UTXOs of tx. The probability that tx is cross-shard is equal to
1 − F (u,v,k), where

F (u,v,k) =



1, if u = v = 1

(1/k)u , if v = 1
k−v
k · F (u − 1,v − 1,k), if u = v

k−v
k · F (u − 1,v − 1,k)+

v
k · F (u − 1,v,k), otherwise.

(10)

For our target network of 4,000 nodes, where we create k = 16 committees, almost all transactions
are expected to be cross-shard because 1−F (3, 1, 16) = 99.98%. In comparison, for a smaller network
of 500 nodes where we create only 3 committees, this probability is equal to 1 − F (3, 1, 3) = 96.3%.

6.8 Estimating Unreported Overheads

We estimate the bandwidth overhead of an epoch of OmniLedger using the numbers reported in [42]:
a total of 1,800 nodes, transaction size of 500B, throughput of 3,500 tx/sec, and a probability of

1A similar calculation is done in [42] but the presented formula is, unfortunately, incorrect.

33

3.7% for a transaction to be intra-shard. OmniLedger requires at least three gossip-to-all invo-
cations per cross-shard transaction. Therefore, the bandwidth required by each node is at least
3,500 tx/sec · 0.967 · 500B · 3 ≈ 45Mbps.

To estimate the throughput of Elastico, we use the reported transaction confirmation latency of
800 seconds for n =1,600, m =16, and 1MB blocks. Assuming 500B/tx, the throughput of Elastico
can be calculated as 16 · 2,000 / 800 = 40 tx/sec.

7 Conclusion

We present RapidChain, the first 1/3-resilient sharding-based blockchain protocol that is highly scal-
able to large networks. RapidChain uses a distributed ledger design that partitions the blockchain
across several committees along with several key improvements that result in significantly-higher
transaction throughput and lower latency. RapidChain handles seamlessly churn introducing mini-
mum changes across committee membership without affecting transaction latency. Our system also
features several improved protocols for fast gossip of large messages and inter-committee routing.
Finally, our empirical evaluation demonstrates that RapidChain scales smoothly to network sizes
of up to 4,000 nodes showing better performance than previous work.

8 Acknowledgment

The authors would like to acknowledge support from NSF grants CNS-1633282, 1562888, 1565208,
and DARPA SafeWare W911NF-15-C-0236 and W911NF-16-1-0389. We are also grateful for kind
help from Loi Luu (NUS) and Aditya Sinha (Yale), and invaluable comments from Dominic Williams
(Dfinity), Timo Hanke (Dfinity), Bryan Ford (EPFL), and Eleftherios Kokoris Kogias (EPFL).

References

[1] Blockchain charts: Bitcoin’s hashrate distribution, March 2017. Available at https://

blockchain.info/pools.

[2] Blockchain charts: Bitcoin’s blockchain size, July 2018. Available at https://blockchain.info/
charts/blocks-size.

[3] Jerasure: Erasure coding library, May 2018. Available at http://jerasure.org.

[4] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. Solida:
A blockchain protocol based on reconfigurable byzantine consensus. In Proceedings of the 21st
International Conference on Principles of Distributed Systems, OPODIS ’17, 2017.

[5] Noga Alon, Haim Kaplan, Michael Krivelevich, Dahlia Malkhi, and JP Stern. Addendum to
scalable secure storage when half the system is faulty. Information and Computation, 2004.

[6] Noga Alon, Haim Kaplan, Michael Krivelevich, Dahlia Malkhi, and Julien Stern. Scalable secure
storage when half the system is faulty. In Proceedings of the 27th International Colloquium on
Automata, Languages and Programming, 2000.

[7] Marcin Andrychowicz and Stefan Dziembowski. PoW-Based Distributed Cryptography with No
Trusted Setup, pages 379–399. Springer Berlin Heidelberg, 2015.

34

https://blockchain.info/pools
https://blockchain.info/pools
https://blockchain.info/charts/blocks-size
https://blockchain.info/charts/blocks-size
http://jerasure.org

[8] Baruch Awerbuch and Christian Scheideler. Towards a scalable and robust DHT. In Proceedings
of the Eighteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’06, pages 318–327. ACM, 2006.

[9] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry, Sarah
Meiklejohn, and George Danezis. Consensus in the age of blockchains. CoRR, abs/1711.03936,
2017.

[10] Elwyn Berlekamp and Lloyd R. Welch. Error correction for algebraic block codes, US Patent
4,633,470, December 1986.

[11] Richard E Blahut. Theory and practice of error control codes, volume 126. Addison-Wesley
Reading (Ma) etc., 1983.

[12] Gabriel Bracha. An asynchronous [(n − 1)/3]-resilient consensus protocol. In Proceedings of
the Third Annual ACM Symposium on Principles of Distributed Computing, PODC ’84, pages
154–162. ACM, 1984.

[13] Gabriel Bracha. An o(logn) expected rounds randomized byzantine generals protocol. In Pro-
ceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC ’85,
pages 316–326. ACM, 1985.

[14] Gabriel Bracha. Asynchronous Byzantine agreement protocols. Information and Computation,
75(2):130–143, November 1987.

[15] Gabriel Bracha and Sam Toueg. Resilient consensus protocols. In Proceedings of the Second
Annual ACM Symposium on Principles of Distributed Computing, PODC ’83, pages 12–26.
ACM, 1983.

[16] Vitalik Buterin. Ethereum’s white paper. https://github.com/ethereum/wiki/wiki/

White-Paper, 2014.

[17] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople: Prac-
tical asynchronous Byzantine agreement using cryptography. In Proceedings of the 19th ACM
Symposium on Principles of Distributed Computing (PODC), pages 123–132, 2000.

[18] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience.
In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC
’93, pages 42–51. ACM, 1993.

[19] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery. ACM
Transactions on Computer Systems (TOCS), 20(4):398–461, 2002.

[20] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of the
Third Symposium on Operating Systems Design and Implementation, OSDI ’99, pages 173–186,
1999.

[21] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Fur-
man, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s globally-distributed
database. pages 251–264, 2012.

35

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

[22] George Danezis and Sarah Meiklejohn. Centrally banked cryptocurrencies. In 23rd Annual
Network and Distributed System Security Symposium, NDSS, 2016.

[23] Christian Decker, Jochen Seidel, and Roger Wattenhofer. Bitcoin meets strong consistency. In
Proceedings of the 17th International Conference on Distributed Computing and Networking,
ICDCN ’16, pages 13:1–13:10. ACM, 2016.

[24] Christian Decker and Roger Wattenhofer. Information propagation in the Bitcoin network. In
P2P, pages 1–10. IEEE, 2013.

[25] John R Douceur. The sybil attack. In International Workshop on Peer-to-Peer Systems, pages
251–260. Springer, 2002.

[26] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press, 2009.

[27] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Advances in
Cryptology — CRYPTO’ 92: 12th Annual International Cryptology Conference Santa Barbara,
California, USA August 16–20, 1992 Proceedings, pages 139–147. Springer Berlin Heidelberg,
1993.

[28] David S. Evans. Economic aspects of Bitcoin and other decentralized public-ledger currency
platforms. In Coase-Sandor Working Paper Series in Law and Economics, No. 685. The Uni-
versity of Chicago Law School, 2014.

[29] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. Bitcoin-NG: A scal-
able blockchain protocol. In Proceedings of the 13th Usenix Conference on Networked Systems
Design and Implementation, NSDI’16, pages 45–59. USENIX Association, 2016.

[30] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In Proceedings
of the 28th Annual Symposium on Foundations of Computer Science, SFCS ’87, pages 427–438.
IEEE Computer Society, 1987.

[31] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analy-
sis and applications. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 281–310. Springer, 2015.

[32] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, pages 51–68. ACM, 2017.

[33] Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY technology overview series,
consensus system. CoRR, abs/1805.04548, 2018.

[34] Egor Homakov. Stop. calling. bitcoin. decentralized. https://medium.com/@homakov/

stop-calling-bitcoin-decentralized-cb703d69dc27, 2017.

[35] Min Huang and Vernon J. Rego. Polynomial evaluation in secret sharing schemes, 2010. URL:
http://csdata.cs.purdue.edu/research/PaCS/polyeval.pdf.

[36] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized rumor spreading. In
Proceedings of the 41st Annual Symposium on Foundations of Computer Science, FOCS ’00,
pages 565–. IEEE Computer Society, 2000.

36

https://medium.com/@homakov/stop-calling-bitcoin-decentralized-cb703d69dc27
https://medium.com/@homakov/stop-calling-bitcoin-decentralized-cb703d69dc27
http://csdata.cs.purdue.edu/research/PaCS/polyeval.pdf

[37] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for Byzantine
agreement. In Advances in Cryptology - CRYPTO 2006, volume 4117 of Lecture Notes in
Computer Science, pages 445–462. Springer Berlin Heidelberg, 2006.

[38] Valerie King and Jared Saia. Breaking the o(n2) bit barrier: Scalable byzantine agreement
with an adaptive adversary. In Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, PODC ’10, pages 420–429. ACM, 2010.

[39] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In Pro-
ceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA ’06,
pages 990–999, 2006.

[40] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Towards secure and scalable com-
putation in peer-to-peer networks. In Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science, FOCS ’06, pages 87–98. IEEE Computer Society, 2006.

[41] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, and
Bryan Ford. Enhancing bitcoin security and performance with strong consistency via collective
signing. In 25th USENIX Security Symposium, USENIX Security ’16, pages 279–296, 2016.

[42] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and
Bryan Ford. OmniLedger: A secure, scale-out, decentralized ledger via sharding. In 2018 IEEE
Symposium on Security and Privacy (S&P), pages 19–34, 2018.

[43] Hugo Krawczyk. Distributed fingerprints and secure information dispersal. In Proceedings of
the Twelfth Annual ACM Symposium on Principles of Distributed Computing, PODC ’93, pages
207–218. ACM, 1993.

[44] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, May
1998.

[45] Derek Leung, Adam Suhl, Yossi Gilad, and Nickolai Zeldovich. Vault: Fast bootstrapping for
cryptocurrencies. Cryptology ePrint Archive, Report 2018/269, 2018. https://eprint.iacr.

org/2018/269.

[46] Eric Limer. The world’s most powerful computer network is be-
ing wasted on Bitcoin. May 2013. Available at http://gizmodo.com/

the-worlds-most-powerful-computer-network-is-being-was-504503726.

[47] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek
Saxena. A secure sharding protocol for open blockchains. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16, pages 17–30. ACM,
2016.

[48] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information system based
on the xor metric. In Revised Papers from the First International Workshop on Peer-to-Peer
Systems, IPTPS ’01, pages 53–65. Springer-Verlag, 2002.

[49] Ralph C. Merkle. A digital signature based on a conventional encryption function. In A Confer-
ence on the Theory and Applications of Cryptographic Techniques on Advances in Cryptology,
CRYPTO ’87, pages 369–378. Springer-Verlag, 1988.

[50] Silvio Micali. ALGORAND: the efficient and democratic ledger. CoRR, abs/1607.01341, 2016.

37

https://eprint.iacr.org/2018/269
https://eprint.iacr.org/2018/269
http://gizmodo.com/the-worlds-most-powerful-computer-network-is-being-was-504503726
http://gizmodo.com/the-worlds-most-powerful-computer-network-is-being-was-504503726

[51] Silvio Micali, Salil Vadhan, and Michael Rabin. Verifiable random functions. In Proceedings
of the 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, pages 120–.
IEEE Computer Society, 1999.

[52] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of bft
protocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’16, pages 31–42. ACM, 2016.

[53] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005.

[54] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. Available at https:

//bitcoin.org/bitcoin.pdf.

[55] Rafail Ostrovsky, Sridhar Rajagopalan, and Umesh Vazirani. Simple and efficient leader election
in the full information model. 1994.

[56] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model.
Cryptology ePrint Archive, Report 2016/917, 2016. http://eprint.iacr.org/2016/917.

[57] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence of
faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[58] Michael O. Rabin. Efficient dispersal of information for security, load balancing, and fault
tolerance. J. ACM, 36(2):335–348, April 1989.

[59] Irving Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of the
Society for Industrial and Applied Mathematics (SIAM), pages 300–304, 1960.

[60] Ling Ren, Kartik Nayak, Ittai Abraham, and Srinivas Devadas. Practical synchronous byzantine
consensus. CoRR, abs/1704.02397, 2017.

[61] Alexander Russell and David Zuckerman. Perfect information leader election in log∗ N + o(1)
rounds. In Proceedings of the 39th Annual Symposium on Foundations of Computer Science,
FOCS ’98, pages 576–. IEEE Computer Society, 1998.

[62] Siddhartha Sen and Michael J. Freedman. Commensal cuckoo: secure group partitioning for
large-scale services. ACM SIGOPS Operating Systems Review, 46(1):33–39, 2012.

[63] Alex Tapscott and Don Tapscott. How blockchain is changing finance. Har-
vard Business Review, March 2017. Available at https://hbr.org/2017/03/

how-blockchain-is-changing-finance.

[64] The Zilliqa Team. The zilliqa technical whitepaper. https://docs.zilliqa.com/whitepaper.

pdf, August 2017.

[65] Hsiao-Wei Wang. Ethereum sharding: Overview and finality. https://medium.com/

@icebearhww/ethereum-sharding-and-finality-65248951f649, 2017.

38

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2016/917
https://hbr.org/2017/03/how-blockchain-is-changing-finance
https://hbr.org/2017/03/how-blockchain-is-changing-finance
https://docs.zilliqa.com/whitepaper.pdf
https://docs.zilliqa.com/whitepaper.pdf
https://medium.com/@icebearhww/ethereum-sharding-and-finality-65248951f649
https://medium.com/@icebearhww/ethereum-sharding-and-finality-65248951f649

	Introduction
	Our Contributions
	Overview of RapidChain

	Background and Related Work
	Committee-Based Consensus
	Sharding-Based Consensus
	RSCoin
	Elastico
	OmniLedger

	Synchronous Consensus
	Information Dispersal Algorithms

	Model and Problem Definition
	Our Protocol
	Design Components
	Decentralized Bootstrapping
	Consensus in Committees
	Gossiping Large Messages
	Remarks on Synchronous Consensus
	Protocol Details
	Improving Performance via Pipelining

	Cross-Shard Transactions
	Inter-Committee Routing
	Committee Reconfiguration
	Offline PoW
	Epoch Randomness Generation
	Committee Reconfiguration
	Node Initialization and Storage

	Evaluation
	Security and Performance Analysis
	Epoch Security
	Gossiping Guarantees
	Security of Intra-Committee Consensus
	Security of Bootstrapping
	Security of Reconfiguration
	Performance Analysis
	Probability of Cross-Shard Transactions
	Estimating Unreported Overheads

	Conclusion
	Acknowledgment

