
Confidential

SOFTWARE AUDIT REPORT

for

HARMONY

Prepared By: Shuxiao Wang

Hangzhou, China
Jan. 08, 2020

1/21 PeckShield Audit Report #: 2019-22

sxwang@peckshield.com

Confidential

Document Properties

Client Harmony
Title Software Audit Report
Target Harmony Blockchain
Version 0.2
Author Jeff Liu
Auditors Edward Lo, Ruiyi Zhang, Huaguo Shi, Jeff Liu
Reviewed by Chiachih Wu
Approved by Xuxian Jiang
Classification Confidential

Version Info

Version Date Author Description
0.2 Jan. 08, 2020 Jeff Liu Add Two Findings
0.1 Sep. 30, 2019 Jeff Liu Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/21 PeckShield Audit Report #: 2019-22

Confidential

Contents

1 Introduction 4
1.1 About Harmony Blockchain . 4
1.2 About PeckShield . 5
1.3 Methodology . 5

1.3.1 Risk Model . 6
1.3.2 Fuzzing . 6
1.3.3 White-box Audit . 7

1.4 Disclaimer . 9

2 Findings 11
2.1 Finding Summary . 11
2.2 Key Findings . 12

3 Detailed Results 15
3.1 Missing Sanity Check When Adding Cross Shard Receipts 15
3.2 Missing Penalty When Leaders Not Processing Cross Shard Receipts 16

4 Conclusion 19

References 20

3/21 PeckShield Audit Report #: 2019-22

Confidential

1 | Introduction

Given the opportunity to review the Harmony Blockchain design document and related source code,
we in this report outline our systematic method to evaluate potential security issues in the Harmony
Blockchain implementation, expose possible semantic inconsistency between the source code and
the design specification, and provide additional suggestions and recommendations for improvement.
Our results show that the given branch of Harmony Blockchain can be further improved due to the
presence of several issues related to either security or performance. This document describes our
audit results in detail.

1.1 About Harmony Blockchain

Harmony [1] is a high performance, sharding-based blockchain developed by Harmony company,
and its Day ONE mainnet was launched on June 28th, 2019. The goal of Harmony blockchain
is to deliver scalability without sacrificing decentralization, with innovations in consensus, systems,
and networking layers. Harmony uses a PBFT based consensus algorithm, named Fast Byzantine
Fault Tolerance (FBFT), and PoS-based Sharding as a scalability solution. Harmony’s randomness
generation function is a combination of Verifiable Random Function (VRF) and Verifiable Delay
Function (VDF).

The basic information of Harmony Blockchain is as follows:

Table 1.1: Basic Information of Harmony Blockchain

Item Description
Issuer Harmony

Website https://harmony.one
Type Harmony Blockchain

Platform Go, C++, Solidity
Audit Method White-box

Latest Audit Report Jan. 08, 2020

4/21 PeckShield Audit Report #: 2019-22

Confidential

The audited Git repositories and the commit hash values are as follows:

Table 1.2: The Commit Hash List Of Audited Branches

Git Repository Commit Hash Of Audited Branch
https://github.com/harmony-one/harmony de34b1753c825a24dc6448f2d513b29eec60d07d
https://github.com/harmony-one/vdf b6aa89d16fd0d4f59b26c96dd1db6f35960222bf
https://github.com/harmony-one/bls 7d37e0af371482e08e32a7cb1f0a9d0a71d7b03f
https://github.com/harmony-one/ida 2993dd502a3de9d1aaa530717a334b8371539b32

1.2 About PeckShield

PeckShield Inc. [2] is a leading blockchain security company with the goal of elevating the security,
privacy, and usability of current blockchain ecosystem by offering top-notch, industry-leading services
and products including security audits. We are reachable at Telegram (https://t.me/peckshield),
Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

1.3 Methodology

In the first phase of auditing Harmony Blockchain, we use fuzzing to find out the corner cases NOT
covered by in-house testing. Next we do white-box auditing, in which PeckShield security auditors
manually review Harmony Blockchain design and source code, analyze them for any potential issues,
also follow up with issues found in the fuzzing phase. We also design and implement test cases to
further reproduce and verify the issues if necessary. In the following subsections, we will introduce
the risk model as well as the audit procedure adopted in this report.

Table 1.3: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

5/21 PeckShield Audit Report #: 2019-22

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Confidential

1.3.1 Risk Model

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [3]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk;

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.3.

1.3.2 Fuzzing

In the first phase of our audit, we use fuzzing to find out possible corner cases or unusual inter-module
interactions that may not be covered by in-house testing.

Fuzzing or fuzz testing is an automated software testing technique of discovering software vulner-
abilities by providing unintended input to the target program and monitoring the unexpected results.
As one of the most effective methods for exploiting vulnerabilities, fuzzing technology has been the
first choice for many security researchers to discover vulnerabilities in recent years. At present, there
are many fuzzy testing tools and supporting software, which can help security personnels to com-
plete fuzzing and find vulnerabilities more efficiently. Based on the characteristics of the Harmony
Blockchain, we use AFL [4] and go-fuzz [5] as the primary tool for fuzz testing.

AFL (American Fuzzy Lop) is a security-oriented fuzzer that employs a novel type of compile-
time instrumentation and genetic algorithms to automatically discover clean, interesting test cases
that trigger new internal states in the targeted binary. Since its inception, AFL has gained growing
popularity in the industry and has proved its effectiveness in discovering quite a few significant
software bugs in a wide range of major software projects. The basic process of AFL fuzzing is as
follows:

• Generate compile-time instrumentation to record information such as code execution path;

• Construct some input files to join the input queue, and change input files according to different
strategies;

• Files that trigger a crash or timeout when executing an input file are logged for subsequent
analysis;

6/21 PeckShield Audit Report #: 2019-22

Confidential

• Loop through the above process

Throughout the AFL testing, we will reproduce each crash based on the crash file generated by
AFL. For each reported crash case, we will further analyze the root cause and check whether it is
indeed a vulnerability. Once a crash case is confirmed as a vulnerability of the Harmony Blockchain,
we will further analyze it as part of the white-box audit.

go-fuzz is a fuzzing tool inspired by AFL, for code written in Go language. It’s a coverage guided
fuzzing solution and mainly applicable to packages that parse complex inputs (both text and binary),
and is especially useful for hardening of systems that parse inputs from potentially malicious users
(e.g., anything accepted over a network).

1.3.3 White-box Audit

After fuzzing, we continue the white-box audit by manually analyzing source code. Here we test
target software’s internal structure, design, coding, and we focus on verifying the flow of input and
output through the application as well as examining possible design and implementation trade-offs
for strengthened security. PeckShield auditors first fully review and understand the source code, then
we create specific test cases, execute them and analyze the results. Issues such as internal security
holes, unexpected output, broken or poorly structured paths, etc., in the targeted software will be
inspected.

Blockchain is a secure method of creating a distributed database of transactions, and three major
technologies of blockchain are cryptography, decentralization, and consensus model. Blockchain does
come with unique security challenges, and based on our understanding of blockchain general design,
during this audit we divide the blockchain software into the following major areas and inspect each
of them:

• Data and state storage, which is related to the database and files where blockchain data are
saved.

• P2P networking, consensus, and transaction model, which is the networking layer. Note that
the consensus and transaction logic is tightly coupled with networking.

• VM, account model, and incentive model. These are the execution and business layer of the
blockchain, and many blockchain business specific logic is concentrated here.

• System contracts and services. These are system-level, blockchain-wide operation management
contracts and services.

• Others. Software modules not included above are checked here, such as common crypto or
other 3rd-party libraries, best practice or optimization used in other software projects, design
and coding consistency, etc.

7/21 PeckShield Audit Report #: 2019-22

Confidential

Table 1.4: The Full List of Audited Items

Category Check Item

Data and State Storage Blockchain Database Security
Database State Integrity Check

Node Operation
Default Configuration Security
Default Configuration Optimization
Node Upgrade And Rollback Mechanism

Node Communication

External RPC Implementation Logic
External RPC Function Security
Node P2P Protocol Implementation Logic
Node P2P Protocol Security
Serialization/Deserialization
Invalid/Malicious Node Management Mechanism
Communication Encryption/Decryption
Eclipse Attack Protection
Fingerprint Attack Protection

Consensus
Consensus Algorithm Scalability
Consensus Algorithm Implementation Logic
Consensus Algorithm Security

Transaction Model
Transaction Privacy Security
Transaction Fee Mechanism Security
Transaction Congestion Attack Protection

VM

VM Implementation Logic
VM Implementation Security
VM Sandbox Escape
VM Stack/Heap Overflow
Contract Privilege Control
Predefined Function Security

Account Model
Status Storage Algorithm Adjustability
Status Storage Algorithm Security
Double Spending Protection

System Contracts And Services System Contracts Security

Others

Third Party Library Security
Memory Leak Detection
Exception Handling
Log Security
Coding Suggestion And Optimization
White Paper And Code Implementation Uniformity

8/21 PeckShield Audit Report #: 2019-22

Confidential

Based on the above classification, here is the detailed list of the audited items as shown in Table
1.4.

To better describe each issue we identified, we also categorize the findings based on Common
Weakness Enumeration (CWE-699) [6], which is a community-developed list of software weakness
types to better classify and organize weaknesses around concepts frequently encountered in software
development. We use the CWE categories in Table 1.5 to classify our findings.

1.4 Disclaimer

Note that this audit does not give any warranties on finding all possible security issues of the given
blockchain software, i.e., the evaluation result does not guarantee the nonexistence of any further
findings of security issues. As one audit cannot be considered comprehensive, we always recommend
proceeding with several independent audits and a public bug bounty program to ensure the security
of blockchain software. Last but not least, this security audit should not be used as an investment
advice.

9/21 PeckShield Audit Report #: 2019-22

Confidential

Table 1.5: Common Weakness Enumeration (CWE) Classifications Used In This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

10/21 PeckShield Audit Report #: 2019-22

Confidential

2 | Findings

2.1 Finding Summary

Here is a summary of our findings after analyzing Harmony Blockchain. During the first phase of
our audit, we studied Harmony source code and ran our in-house static code analyzer through the
codebase, focused on the Harmony VM and crypto libraries. Next, we audited the general token
transfer, staking, and consensus logics. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tools. We further manually review
business logics, examine system operations, and place operation specific aspects under scrutiny to
uncover possible pitfalls and/or bugs. We have so far identified a list of potential issues: some
of them involve subtle corner cases that might not be previously thought of, while others refer to
unusual interactions among multiple modules.

For each uncovered issue, we have therefore developed test cases for reasoning, reproduction,
and/or verification. After further analysis and internal discussion, we determined 2 issues of that
need to be brought up and pay more attention to, which are categorized in the table 2.1. More
information can be found in the next subsection.

Here we also include screenshots of the current status of fuzzing. Figure 2.1 is a screenshot of a
running AFL fuzzer which is testing the bls library. And, Figure 2.4 is the screenshot of a running Go-
fuzz fuzzer which is testing the Harmony VM. We examine these parameters regularly, and whenever
the uniq crashes increases, we look into the input which triggers the new unique crash. Once an
issue that triggers crash is determined to be valid, further investigation will follow to root-cause and
formulate fix recommendation for it.

Table 2.1: Key Audit Findings

ID Severity Title Category Status
PVE-001 Medium Missing Sanity Check When Adding

Cross Shard Receipts
Coding Practices Fixed

PVE-002 Informational Missing Penalty When Leaders Not
Processing Cross Shard Receipts

Behavioral Issues Confirmed

11/21 PeckShield Audit Report #: 2019-22

Confidential

2.2 Key Findings

We conducted our audit of the Harmony design and implementations, starting with Harmony VM
and crypto libraries, after that we audited general token transfer, staking, and consensus logics. After
analyzing all of the potential issues found during the audit, we determined that a number of them
need to be brought up and pay more attention to, as shown in Table 2.1. Please refer to Section 3
for detailed discussion of each vulnerability.

Harmony’s VM is fully compatible with Ethereum VM (Constantinople), and they plan to support
Wasm after mainnet launch. We worked through the Harmony VM code, and didn’t find any fix
missing for known Ethereum VM issues. We fed the Harmony VM through the go-fuzz tool, found
two crashes and later determined to be caused by timeout. Further investigation found that they
were timing issues related to go-fuzz, and there was no similar issue running Harmony VM directly.
Therefore, we marked them as false warnings. The total coverage is pretty high, as shown in Figure
2.3, and the current status of the go-fuzz result is shown in Figure 2.4.

BLS signature scheme [7] is an excellent multisig solution which has some good properties com-
pared to ECDSA [8] and Schnorr [9]. Harmony adopted the open source C++ BLS implementa-
tion [10] which has a harness that enables the integration with Golang software. We started our
audit work with AFL fuzzing. Specifically, we used afl-clang++ to compile the bls source code,
which instruments the library as shown in Figure 2.2. Then, with a simple seed input, we started
fuzzing the instrumented BLS as shown in Figure 2.1. During the first phase of our audit, we did not
find any issue in the BLS library through AFL fuzzing. In the next phase, we will firstly try to improve
the code coverage of fuzzing. Later, we will manually test and review the BLS implementation.

The other part of crypto libraries included in our first phase audit is the implementation of VDF,
which is an essential component to provide trustworthy randomness on Harmony blockchain. With
the trustworthy on-chain randomness, the blockchain would be able to safely support numerous
applications such as dice dapps without an oracle mechanism. This is not a guaranteed feature
on most blockchains. In many cases, the wrong implementations of on-chain mechanism caused
tremendous financial damages [11, 12]. Our target here is a Golang implementation of Benjanmin
Wesolowski’s paper [13]. We started testing the library with the example src/test/vdf_module_test.go

in this phase. In the next phase, we will apply go-fuzz on it as well.

12/21 PeckShield Audit Report #: 2019-22

Confidential

Figure 2.1: AFL Screenshot

Figure 2.2: AFL Instrumentation

13/21 PeckShield Audit Report #: 2019-22

Confidential

Figure 2.3: Go-fuzz Coverage

Figure 2.4: Go-fuzz Screenshot

14/21 PeckShield Audit Report #: 2019-22

Confidential

3 | Detailed Results

3.1 Missing Sanity Check When Adding Cross Shard Receipts

• ID: PVE-001

• Severity: Medium

• Likelihood: High

• Impact: Low

• Target: node/node.go

• Category: Coding Practices [14]

• CWE subcategory: CWE-20 [15]

Description

There is a vulnerability in the P2P module, which could be exploited by attackers to slow down the
processing of cross shard transfers.

134 func (node ∗Node) Proce s sRece i p tMes sage (msgPayload [] byte) {
135 cxp := type s . CXRece ip t sProo f {}
136 i f e r r := r l p . DecodeBytes (msgPayload , &cxp) ; e r r != n i l {
137 u t i l s . Logger () . E r r o r () . E r r (e r r) . Msg("[ProcessReceiptMessage] Unable to Decode

message Payload")
138 re tu rn
139 }
140 u t i l s . Logger () . Debug () . I n t e r f a c e ("cxp" , cxp) . Msg("[ProcessReceiptMessage] Add

CXReceiptsProof to pending Receipts")
141 // TODO: integrate with txpool
142 node . AddPend ingRece ipt s (&cxp)
143 }

Listing 3.1: node/node_cross_shard.go

ProcessReceiptMessage will be called for receipts messages. It will decode the cross shard receipts
and merkle proof encoded in RLP format, and pass them to AddPendingReceipts (line 142).

332 func (node ∗Node) AddPend ingRece ipt s (r e c e i p t s ∗ t yp e s . CXRece ip t sProo f) {
333 node . pendingCXMutex . Lock ()
334 de fe r node . pendingCXMutex . Unlock ()
335
336 i f r e c e i p t s . Conta in sEmptyF i e l d () {
337 u t i l s . Logger () . I n f o () . I n t (.)

15/21 PeckShield Audit Report #: 2019-22

Confidential

338 re tu rn
339 }
340
341 blockNum := r e c e i p t s . Header . Number () . U int64 ()
342 shard ID := r e c e i p t s . Header . ShardID ()
343 key := u t i l s . GetPendingCXKey (shardID , blockNum)
344
345 i f _, ok := node . pend ingCXRece ip t s [key] ; ok {
346 u t i l s . Logger () . I n f o () . I n t (.)
347 re tu rn
348 }
349 node . pend ingCXRece ip t s [key] = r e c e i p t s
350 u t i l s . Logger () . I n f o () . I n t (.)
351 }

Listing 3.2: node/node.go

183 // ContainsEmptyField checks whether the given CXReceiptsProof contains empty field
184 func (cxp ∗ CXRece ip t sProo f) Conta in sEmptyF i e l d () bool {
185 re tu rn cxp == n i l | | cxp . R e c e i p t s == n i l | | cxp . Merk l eProo f == n i l | | cxp . Header ==

n i l | | l en (cxp . CommitSig)+l en (cxp . CommitBitmap) == 0
186 }

Listing 3.3: core/types/cx_receipt.go

AddPendingReceipts will first check whether the receipt contains empty fields (line 336) or had
been recorded in the pendingCXReceipts map (line 345), and will save it if not (line 349).

However, there is no further sanity check enforced while adding new receipts into pendingCXRe-
ceipts. Specifically, a malicious attacker can craft a valid yet meaningless CXReceiptsProof and send
it to the victims to occupy the pendingCXReceipts map with the key composed from shardID and
blockNum, which will block the real CXReceiptsProof from normal nodes and slow down the cross
shard transfer processing.

Recommendation Add sanity checks for the origin and validity of the cross shard receipts.

3.2 Missing Penalty When Leaders Not Processing Cross Shard
Receipts

• ID: PVE-002

• Severity: Informational

• Likelihood: High

• Impact: None/Undetermined

• Target: node/worker/worker.go

• Category: Behavioral Issues [16]

• CWE subcategory: CWE-841 [17]

16/21 PeckShield Audit Report #: 2019-22

Confidential

Description

The cross shard transfer is supported on harmony blockchain. The process can be summarized as
follows:

1) Source shards run the cross shard transactions, and broadcast cross shard receipts to destination
shards.

2) Destination shards receive the receipts and put them in a pending map.

3) Destination shards leaders handle the cross shard receipts in the new blocks.

79 func (node ∗Node) proposeNewBlock () (∗ t yp e s . Block , e r r o r) {
80 node . Worker . UpdateCur rent ()
81

Listing 3.4: node/node_newblock.go

124 i f e r r := node . Worker . CommitTransact ions (
125 pending , p end i ngS t ak i ngT ran s a c t i on s , b e n e f i c i a r y ,
126 func (pay load s t a k i n g . RPCTransact ionEr ro r) {
127 const maxSize = 1024
128 node . e r r o r S i n k . Lock ()
129 i f l := l en (node . e r r o r S i n k . f a i l e dT x n s) ; l >= maxSize {
130 node . e r r o r S i n k . f a i l e dT x n s = append (node . e r r o r S i n k . f a i l e dT x n s [1 :] , pay load)
131 } e l s e {
132 node . e r r o r S i n k . f a i l e dT x n s = append (node . e r r o r S i n k . f a i l e dTxn s , pay load)
133 }
134 node . e r r o r S i n k . Unlock ()
135 } ,
136) ; e r r != n i l {
137 u t i l s . Logger () . E r r o r () . E r r (e r r) . Msg("cannot commit transactions")
138 re tu rn n i l , e r r
139 }
140
141 // Prepare cross shard transaction receipts
142 r e c e i p t s L i s t := node . p r opo s eRe c e i p t sP r o o f ()
143 i f l en (r e c e i p t s L i s t) != 0 {
144 i f e r r := node . Worker . CommitRece ipts (r e c e i p t s L i s t) ; e r r != n i l {
145 u t i l s . Logger () . E r r o r () . E r r (e r r) . Msg("[proposeNewBlock] cannot commit receipts")
146 }
147 }

Listing 3.5: node/node_newblock.go

proposeNewBlock is called by shard leaders for proposing a new block. It will process the pending
transactions / staking transactions (line 124 - 139), and handle the cross shard transaction receipts
(line 142 - 147).

17/21 PeckShield Audit Report #: 2019-22

Confidential

206 func (w ∗Worker) CommitRece ipts (r e c e i p t s L i s t [] ∗ t yp e s . CXRece ip t sProo f) e r r o r {
207 i f w. c u r r e n t . gasPoo l == n i l {
208 w. c u r r e n t . gasPoo l = new(co r e . GasPool) . AddGas (w. c u r r e n t . heade r . GasL imi t ())
209 }
210
211 i f l en (r e c e i p t s L i s t) == 0 {
212 w. c u r r e n t . heade r . Se t IncomingRece ip tHash (t yp e s . EmptyRootHash)
213 } e l s e {
214 w. c u r r e n t . heade r . Se t IncomingRece ip tHash (t yp e s . Der i veSha (t yp e s . CXRece ip t sProo f s (

r e c e i p t s L i s t)))
215 }
216
217 f o r _, cx := range r e c e i p t s L i s t {
218 e r r := co r e . App l y IncomingRece ip t (w. con f i g , w . c u r r e n t . s t a t e , w . c u r r e n t . header , cx)
219 i f e r r != n i l {
220 re tu rn c t x e r r o r .New("cannot apply receiptsList") . WithCause (e r r)
221 }
222 }
223
224 f o r _, cx := range r e c e i p t s L i s t {
225 w. c u r r e n t . i n c x s = append (w. c u r r e n t . i n c x s , cx)
226 }
227 re tu rn n i l
228 }

Listing 3.6: node/worker/worker.go

CommitReceipts will apply the receipts and adjust the balance of the corresponding account (line
218). However, there is no penalty if shard leader intentionally ignore any specific receipts and
let them stay pending forever. Specifically, a leader is free to choose any receipts in the node.

pendingCXReceipts map, not by timestamp or any other specific rule, and there is no penalty if a
malicious leader intentionally ignore some receipts. Ttechnically, a leader can skip some cross shard
receipts on purpose and let them stay pending forever.

Recommendation Add penalty when leaders do not process cross shard receipts. According
to Harmony, leader rotation and the mechanisms to detect transaction withholding and preempt a
malicious leader will be added in the next phase of mainnet upgrade. In the current phase where
Harmony controls the leader nodes, this is not an issue to the users.

18/21 PeckShield Audit Report #: 2019-22

Confidential

4 | Conclusion

For this security audit, we have analyzed the Harmony Blockchain. During the first phase of our
audit, we studied the source code and ran our in-house analyzing tools through the codebase, in-
cluding areas such as Harmony VM and crypto libraries. Next, we audited the general token transfer,
staking, and consensus logics. A list of potential issues were found, and some of them involve unusual
interactions among multiple modules, therefore we developed test cases to reproduce and verify each
of them. After further analysis and internal discussion, we determined that a number of issues need
to be brought up and pay more attention to, which are reported in Sections 2 and 3. Given that
the reported issues have been fixed, we do feel that the Harmony VM and token transfer logic have
been thoroughly inspected, and there is no other known issues in those areas, therefore they can be
deployed on the blockchain with confidence.

Our impression through this audit is that the Harmony Blockchain software is neatly organized
and elegantly implemented and those identified issues are promptly confirmed and fixed. We’d like
to commend Harmony for a well-done software project, and for quickly fixing issues found during
the audit process. Also, as expressed in Section 1.4, we appreciate any constructive feedback or
suggestions about this report.

19/21 PeckShield Audit Report #: 2019-22

Confidential

References

[1] Harmony. Harmony Inc. https://harmony.one.

[2] PeckShield. PeckShield Inc. https://www.peckshield.com.

[3] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[4] Lcamtuf. american fuzzy lop. http://lcamtuf.coredump.cx/afl/.

[5] gofuzz. gofuzz. https://github.com/dvyukov/go-fuzz.

[6] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[7] Wikipedia. Boneh–Lynn–Shacham. https://en.wikipedia.org/wiki/Boneh%E2%80%93Lynn%

E2%80%93Shacham.

[8] Wikipedia. Elliptic Curve Digital Signature Algorithm. https://en.wikipedia.org/wiki/Elliptic_

Curve_Digital_Signature_Algorithm.

[9] Wikipedia. Schnorr signature. https://en.wikipedia.org/wiki/Schnorr_signature.

[10] MITSUNARI Shigeo. An implementation of BLS threshold signature. https://github.com/

herumi/bls.

[11] PeckShield. Pwning Fomo3D Revealed: Iterative, Pre-Calculated Contract Creation For Airdrop

Prizes! https://blog.peckshield.com/2018/07/24/fomo3d/.

20/21 PeckShield Audit Report #: 2019-22

https://harmony.one
https://www.peckshield.com
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://lcamtuf.coredump.cx/afl/
https://github.com/dvyukov/go-fuzz
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://en.wikipedia.org/wiki/Boneh%E2%80%93Lynn%E2%80%93Shacham
https://en.wikipedia.org/wiki/Boneh%E2%80%93Lynn%E2%80%93Shacham
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Schnorr_signature
https://github.com/herumi/bls
https://github.com/herumi/bls
https://blog.peckshield.com/2018/07/24/fomo3d/

Confidential

[12] PeckShield. Defeating EOS Gambling Games: The Techniques Behind Random Number Loop-

hole. https://blog.peckshield.com/2018/11/22/eos/.

[13] Benjamin Wesolowski. Efficient verifiable delay functions. Advances in Cryptology –

EUROCRYPT 2019, 11478:379–407, 2019.

[14] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[15] MITRE. CWE-20: Improper Input Validation. https://cwe.mitre.org/data/definitions/20.html.

[16] MITRE. CWE CATEGORY: Behavioral Problems. https://cwe.mitre.org/data/definitions/438.

html.

[17] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

21/21 PeckShield Audit Report #: 2019-22

https://blog.peckshield.com/2018/11/22/eos/
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/438.html
https://cwe.mitre.org/data/definitions/438.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html

	Introduction
	About Harmony Blockchain
	About PeckShield
	Methodology
	Risk Model
	Fuzzing
	White-box Audit

	Disclaimer

	Findings
	Finding Summary
	Key Findings

	Detailed Results
	Missing Sanity Check When Adding Cross Shard Receipts
	Missing Penalty When Leaders Not Processing Cross Shard Receipts

	Conclusion
	References

