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Bring Research Results to Production!

Backtesting with historical data? 
Adversarial simulation, parameter optimizations? 
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Harmony: Production Network of 100k Nodes

A high-performance blockchain demands 10x innovations in 
transport networks, consensus protocols & systems tools.

We bring proven innovations to large-scale production
[OmniLedger*, RapidChain, Blockmania, Avalanche].



4

Sharding Contracts with Static Types

Age of Open Development: a core team  to productionize 
research with protocol + application communities

[Chainspace*, Scilla, Fraud Proofs]. 



Can smart contracts be safe, easy, fast?
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Scaling Trust to 10B people & 100B devices

Can we agree now but foresee inconsistency in practice?

Can we rely on intuition when expressing terms & conditions?

Can we iterate without lawyers, regional laws, or penalties?



Java Virtual Machine makes web applications so boringly 
reliable for teams of 100+ developers
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Trusting Contracts: As SAFE as Java



 

Run-time checks maintain global constraints (termination, 
resource consumption, balance flow)
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Trusting Contracts: As SAFE as Java
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Trusting Contracts: As SAFE as Java

 

Formal verification via dependent types (Twelf, ProVerif, Coq) 
guarantees hacker-proof before deploy



Tse/TOPLAS: Verified interoperable implementations of security protocols
Tse/IEEE-SP: Run-time principals in information-flow type systems
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Java Virtual Machine makes web applications so boringly 
reliable for teams of 100+ developers

Run-time checks maintain global constraints (termination, 
resource consumption, balance flow)

Formal verification via dependent types (Twelf, ProVerif, Coq) 
guarantees hacker-proof before deploy

Trusting Contracts: As SAFE as Java



Minimal syntax (no distraction!), human has limited cognitive 
focus for abstractions such as invariants & isomorphism
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Writing Contracts: As EASY as Python



Functional and process calculi to avoid managing states, type 
inference as theorem proving to tame structures & complexity
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Writing Contracts: As EASY as Python



12

Writing Contracts: As EASY as Python

Understand theories behind dependencies (information flow) & 
parametricity (higher-order polymorphism) vs “fat languages”



Tse/Penn: Concise concrete syntax (generalized LR parser), min-lang.com
Tse/ICFP: Translating dependency into parametricity

Minimal syntax (no distraction!), human has limited cognitive 
focus for abstractions such as invariants & isomorphism

Functional and process calculi to avoid managing states, type 
inference as theorem proving to tame structures & complexity

Understand theories behind dependencies (information flow) & 
parametricity (higher-order polymorphism) vs “fat languages”
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Writing Contracts: As EASY as Python



Compile to native code & run tests in 200 ms

Tezos, Zilliqa’s Scilla, Coda’s SNARK, Coq are written in OCaml

Declarative style leaves freedom for memory management, 
parallelism strategies, graph executions, sharding algorithms 
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Running Contracts: As FAST as OCaml



black_scholes
      s : ℝ # stock price
      x : ℝ # strike price
      t : ℝ # expiration time in years
      r : ℝ # risk-free interest rate
      σ : ℝ # volatility
      : ℝ
 = s ϕ(d1) - x e^(-r t)ϕ(d2) @ 
  ϕ = Normal.cdf
  d0 = log s/x + (r + σ²/2)t
  d1 = d0 / σ√t
  d2 = d1 - σ√t
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Beautiful and Secure Code

harmony.one/type-checks



Stephen: security protocols PhD

Nicolas: VR startup founder

Alok: Apple Siri ML

Rongjian: Google search

Minh: Google infrastructure
Nick: Stanford AI masters

Sahil:  Harvard MBA

Eugene: Amazon networking

Leo: Amazon Phone OS
Hakwan: Rhode Scholars

Kayuet: Oxford PhD
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Join Harmony team! Bring Empathy, Passion, Excellence 

Rust engineers, protocol researchers, 
compiler writers to s@harmony.one

See harmony.one/talk, /sharding and /tgi



Optimistic confirms
Trust but verify low-value 
transactions with shard 
deposits. Guarantee finality in 
~1s with penalty linear to loss 
and detection in minutes.

Pruning checkpoints
State blocks for storage and 
bootstrapping against 
Byzantine DoS. Multi-hop, 
collectively signed back 
-pointers, 100x space savings. 

Parallelizing blocks
Acyclic graphs to capture 
transaction dependencies 
transitively. Divide each shard 
into groups to replace faulty 
nodes with a view-change.

Atomic shard-commit
Each shard uses O(log n) 
multicast tree-based BFT to 
unanimously accept 
cross-shard transactions with 
O(1)-size coordination.

Gradual transition
Sybil-resistant identities to 
maintain liveness when 
swapping. A sliding window 
from a fixed permutation to 
ensure ⅔ honest majority.

OmniLedger: Principles & Optimizations for Scaling

Representative sharding
O(1)-size multi-signatures for 
10k nodes vs 16-node PBFT. 
Crypto sortition via randoness 
from multi-party computation 
and commit-then-reveal step.
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