
Scaling via Systems and Language Design

Stephen Tse
harmony.one/talk

Harmony
Open Consensus for 10B People

2

Bring Research Results to Production!

Backtesting with historical data?
Adversarial simulation, parameter optimizations?

3

Harmony: Production Network of 100k Nodes

A high-performance blockchain demands 10x innovations in
transport networks, consensus protocols & systems tools.

We bring proven innovations to large-scale production
[OmniLedger*, RapidChain, Blockmania, Avalanche].

4

Sharding Contracts with Static Types

Age of Open Development: a core team to productionize
research with protocol + application communities

[Chainspace*, Scilla, Fraud Proofs].

Can smart contracts be safe, easy, fast?

5

Scaling Trust to 10B people & 100B devices

Can we agree now but foresee inconsistency in practice?

Can we rely on intuition when expressing terms & conditions?

Can we iterate without lawyers, regional laws, or penalties?

Java Virtual Machine makes web applications so boringly
reliable for teams of 100+ developers

6

Trusting Contracts: As SAFE as Java

Run-time checks maintain global constraints (termination,
resource consumption, balance flow)

7

Trusting Contracts: As SAFE as Java

8

Trusting Contracts: As SAFE as Java

Formal verification via dependent types (Twelf, ProVerif, Coq)
guarantees hacker-proof before deploy

Tse/TOPLAS: Verified interoperable implementations of security protocols
Tse/IEEE-SP: Run-time principals in information-flow type systems

9

Java Virtual Machine makes web applications so boringly
reliable for teams of 100+ developers

Run-time checks maintain global constraints (termination,
resource consumption, balance flow)

Formal verification via dependent types (Twelf, ProVerif, Coq)
guarantees hacker-proof before deploy

Trusting Contracts: As SAFE as Java

Minimal syntax (no distraction!), human has limited cognitive
focus for abstractions such as invariants & isomorphism

10

Writing Contracts: As EASY as Python

Functional and process calculi to avoid managing states, type
inference as theorem proving to tame structures & complexity

11

Writing Contracts: As EASY as Python

12

Writing Contracts: As EASY as Python

Understand theories behind dependencies (information flow) &
parametricity (higher-order polymorphism) vs “fat languages”

Tse/Penn: Concise concrete syntax (generalized LR parser), min-lang.com
Tse/ICFP: Translating dependency into parametricity

Minimal syntax (no distraction!), human has limited cognitive
focus for abstractions such as invariants & isomorphism

Functional and process calculi to avoid managing states, type
inference as theorem proving to tame structures & complexity

Understand theories behind dependencies (information flow) &
parametricity (higher-order polymorphism) vs “fat languages”

13

Writing Contracts: As EASY as Python

Compile to native code & run tests in 200 ms

Tezos, Zilliqa’s Scilla, Coda’s SNARK, Coq are written in OCaml

Declarative style leaves freedom for memory management,
parallelism strategies, graph executions, sharding algorithms

14

Running Contracts: As FAST as OCaml

black_scholes
 s : ℝ # stock price
 x : ℝ # strike price
 t : ℝ # expiration time in years
 r : ℝ # risk-free interest rate
 σ : ℝ # volatility
 : ℝ
 = s ϕ(d1) - x e^(-r t)ϕ(d2) @
 ϕ = Normal.cdf
 d0 = log s/x + (r + σ²/2)t
 d1 = d0 / σ√t
 d2 = d1 - σ√t

15

Beautiful and Secure Code

harmony.one/type-checks

Stephen: security protocols PhD

Nicolas: VR startup founder

Alok: Apple Siri ML

Rongjian: Google search

Minh: Google infrastructure
Nick: Stanford AI masters

Sahil: Harvard MBA

Eugene: Amazon networking

Leo: Amazon Phone OS
Hakwan: Rhode Scholars

Kayuet: Oxford PhD

16

Join Harmony team! Bring Empathy, Passion, Excellence

Rust engineers, protocol researchers,
compiler writers to s@harmony.one

See harmony.one/talk, /sharding and /tgi

Optimistic confirms
Trust but verify low-value
transactions with shard
deposits. Guarantee finality in
~1s with penalty linear to loss
and detection in minutes.

Pruning checkpoints
State blocks for storage and
bootstrapping against
Byzantine DoS. Multi-hop,
collectively signed back
-pointers, 100x space savings.

Parallelizing blocks
Acyclic graphs to capture
transaction dependencies
transitively. Divide each shard
into groups to replace faulty
nodes with a view-change.

Atomic shard-commit
Each shard uses O(log n)
multicast tree-based BFT to
unanimously accept
cross-shard transactions with
O(1)-size coordination.

Gradual transition
Sybil-resistant identities to
maintain liveness when
swapping. A sliding window
from a fixed permutation to
ensure ⅔ honest majority.

OmniLedger: Principles & Optimizations for Scaling

Representative sharding
O(1)-size multi-signatures for
10k nodes vs 16-node PBFT.
Crypto sortition via randoness
from multi-party computation
and commit-then-reveal step.

17

