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1 Introduction
A unifying vision of the distributed ledger technology is to connect multiple distributed systems
together. While the disruption of financial infrastructure is still early, now is the time to bring
many protocols together to scale their innovations for broader adoption. Cross-chain bridges pro-
vide broader access of users and assets to decentralized finance. In particular, lending Bitcoin
for high-yield financial instruments on Ethereum has surpassed US $1B on-chain management.
Cross-chain transactions are more than asset transfers via atomic swaps with hash time locked
contracts.

A relay bridge implements a bi-directional relay of block headers between two blockchains. In
such a bridge, block headers of blockchain A are constantly being submitted to a smart contract
in blockchain B, which implements a light client logic to verify the validity of the headers. And
analogously headers from blockchain B are submitted to a smart contract in blockchain A.

A simple example is the BTC relay which implements a uni-directional relay from Bitcoin to
Ethereum. There, the Ethereum smart contract computes the difficulty of the submitted Bitcoin
headers. A proof for the validity of each header amounts to checking it resides on the longest
chain of submitted headers.

Light clients [1–3] can be used to perform cross-chain transactions efficiently. Such transac-
tions can happen when exchanging cryptocurrencies [4,5], transferring assets to sidechains [2,

*This work was done when the author was affiliated with Yale University.
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6, 7], or sharding blockchains [8, 9]. Such clients enable a user to generate short cryptographic
inclusion proofs about past events recorded on a blockchain. In a proof-of-work (PoW) blockchain
such as Bitcoin [10] and Ethereum [11], this can be done by providing the sequence of all block
headers to prove to any verifier that the event is recorded on the honest chain that is the longest,
or more precisely, the most computationally-difficult chain.

An important characteristic of many light client proofs is portability, i.e., they can be forwarded
to other nodes on other blockchain networks to convince them that a certain event was recorded
on the source blockchain. While light clients for PoW chains have been proposed starting with Bit-
coin’s SPV client [10] and later in PoPoW [2,12] and FlyClient [3], no light client has been proposed
for proof-of-stake chain that rely on Byzantine fault tolerance (BFT) for consensus. Designing a
light client for such chains is challenging. While aggregate signatures contain a sufficient num-
ber of attestations, we do not know if those attestations actually come from validators that actually
have stake. The only way to know this is if we know the balance (i.e., state) of every validator
which is what a full node does.

1.1 Our Contributions
We propose a gas-efficient, cross-chain bridge protocol to transfer assets from a BFT blockchain
to another blockchain (e.g., Ethereum) which supports basic smart contract execution. To achieve
this, our paper makes the following contributions:

• We construct a super-light client for BFT chains that allows a client to prove to any external
entity that a transaction has been recorded on the BFT chain by providing a cryptographic
proof that is constant size in the length of the chain.

• We construct a bridge smart contract on the destination chain for atomic verification of super-
light client proofs that guarantee a certain amount of tokens are locked on the BFT chain.
The contract also can unlock/mint an equal amount of tokens on the destination blockchain
once the verification succeeds.

• We construct a relay node which periodically transmits to the contract constant-size, check-
point information as commitments to the BFT chain. This information allows the contract to
later verify super-light client proofs submitted by the client to the contract. While the total
amount of information submitted by the relay to the contract for all checkpoints is linear to
the chain length, the frequency of checkpoints could be adjusted in practice to curb this
overhead.

• We propose an efficient chain commitment mechanism that allows the client to prove inclu-
sion of a block in a blockchain with a constant-size commitment and logarithmic blockchain
inclusion proofs.

• We further propose a stateless bridge contract design that allows the client to send a small,
self-sufficient cross-chain transaction to the contract that does not require any pre-relayed
checkpoint information. Our solution requires the client to include only a logarithmic-size (in
the chain length) inclusion proof in its message, making it the first BFT bridge protocol that
requires logarithmic-size, cross-chain proofs.

On PoW-to-BFT Transfers. Our bridge protocol further allows a client to transfer assets from a
PoW chain (such as Bitcoin or Ethereum) to a BFT chain using FlyClient [3] logarithmic-size proofs.
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This, however, requires certain chain commitments (in the form of Merkle roots) already being
included in every block header, which unfortunately, is not possible until a soft fork on Bitcoin
and Ethereum includes these commitments in all future block headers. Until then, our bridge
protocol adopts the SPV approach of Rainbow bridge [13], where the relay node periodically
sends all recent Bitcoin/Ethereum block headers to the smart contract on the BFT chain. While
this incurs a significantly higher storage and computation overhead on the contract, we expect the
significantly lower gas cost of most BFT chain (such as Harmony [14] and NEAR [13]) could justify
such overhead until chain commitments become available on Bitcoin and Ethereum. Moreover,
one may .

1.2 Our Model
System Model. Consider a blockchain protocol A, where a group of validators agree on a chain
via a BFT blockchain protocol such as [15–17], where validators participate in a BFT consensus
protocol to agree on each block of transactions. In a permissionless setting, such a protocol
typically proceeds in epochs, where in each epoch, one or more BFT executions are followed
by a reconfiguration step to randomly select a new group of validators to drive the next epoch.
To obtain voting power in the BFT protocol, the reconfiguration protocol may establish identities
through any Sybil-resistance mechanism such as PoW (as in [8, 15, 18]) or proof-of-stake (PoS)
(as in [14,16,19]).

Let B denote another blockchain network that grows a valid chain based on any consensus
mechanism (e.g., Nakamoto [10] or BFT) and provides basic smart contract support to execute
arbitrary programs. We say a block 𝐵 of transactions added to B’s chain is final when 𝐵 is perma-
nently recorded on the chain. For example, in Bitcoin and Ethereum, this means that a sufficient
number of blocks are appended to the chain after 𝐵, formalized as themost difficult chain principle
by Garay et al. [20,21].

Our bridge system consists of (1) a client C who can submit cross-chain transactions to A and
B, (2) a relay R which periodically submits information about A’s chain to B, and (3) a full node FA
that maintains an up-to-date copy of A’s chain at any time and responds to queries from C and R
about the chain.

Threat Model. We consider a probabilistic polynomial-time Byzantine adversary who wishes to
prevent our protocol from reaching its goals by corrupting a subset of nodes involved. The corrupt
nodes may not only collude with each other but can also deviate from the protocol in any arbitrary
manner, e.g., by sending invalid or inconsistent messages, by remaining silent, etc. We allow the
adversary to control both C and R to prevent our protocol from achieving its goals.

We assume that, at any time, both chains maintain standard blockchain immutability and no
double spending properties. In PoW chains, for example, this requires that, at any time, less than
1/2 of the computational mining power (aka, hash rate) be controlled by the adversary. To ensure
security against selfish mining [22], one may alternatively assume less than 1/4 adversarial com-
putational power. Alternatively, a PoS chain may require less than 1/3 of the total stake associated
with validators in the network be controlled by the adversary.

Problem Definition. Client C wants to perform a cross-chain transaction 𝑋A→B to transfer an
amount of 𝑥 tokens from A to B. The transaction consists of two on-chain transactions 𝑇burn and
𝑇unlock to be recorded on A and B respectively. A cross-chain bridge protocol is secure if and only
if it guarantees the following atomicity property:
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Atomicity: Transaction 𝑋A→B is either committed or aborted. We say 𝑋A→B is commit-
ted if and only if𝑇burn is committed (i.e., permanently recorded) on A’s chain and𝑇unlock
is committed on B’s chain. We say 𝑋A→B is aborted if and only if 𝑇burn and 𝑇unlock are
both aborted (i.e., not committed on the corresponding chains).

2 Background and Related Work

2.1 Light Clients
To verify that a blockchain is valid without participating in the mining process, a client may choose
to download blocks from a miner or a full node who holds a copy of the entire chain. Currently,
downloading and verifying all blocks in Bitcoin or Ethereum requires a node to downloadmore than
200 GB of data, taking hours to synchronize the node’s local blockchain [23]. Such a requirement
causes long delays for regular clients and makes it nearly impossible for storage-limited clients
to quickly verify transactions.

The original Bitcoin design [10] describes a faster synchronization mechanism, known as sim-
plified payment verification, that allows efficient verification of transactions on the blockchain. In
Bitcoin [10] and Ethereum [11], block headers contain enough information to ensure that (1) the
PoW is valid, (2) the block includes a certain transaction, and (3) the block is at a certain position
on the correct chain. The transaction validation process utilizes a Merkle tree commitment to all
transactions in a block which is stored in each block header. A light client does not verify all
transactions in the entire chain and essentially relies on the assumption that the chain with the
most proof-of-work contains only valid transactions and follows the rules of the system.

Kiayias et al. [2,12] propose an interactive proof mechanism, known as proofs of proof-of-work
(PoPoW) that allows a prover to convince a verifier with high probability in logarithmic time and
communication that a chain contains a sufficient amount of work. The PoPoW protocol suffers from
multiple drawbacks described by Bünz et al. [3] who propose a new solution, known as FlyClient,
that overcomes the limitations of PoPoW.

FlyClient uses a probabilistic sampling technique to randomly sample a logarithmic number
of block headers (in the chain length) from a PoW-based blockchain with variable block diffi-
culty. FlyClient uses an efficiently-updatable commitment mechanism, known asMerkle mountain
range (MMR) [24], that allows provers to commit to an entire blockchain with a small (constant-
size) commitment while offering logarithmic block inclusion proofs with position binding guaran-
tees.

2.2 Cross-Chain Bridges
Rainbow Bridge [13]. NEAR’s Rainbow bridge uses light clients to transfer ERC-20 tokens from
Ethereum to NEAR’s PoS blockchain and vice versa. For each chain, the Rainbow protocol de-
ploys a smart contract that implements a light client and relay nodes that regularly sends block
headers to the light client. Namely, Ethereum relays (aka, ETH-2-NEAR relays) sends every single
Ethereum header to the NEAR contract, while the NEAR relays (aka, NEAR-2-ETH relays) sends
one header every 4 hours to the Ethereum contract. As a result, both contracts can independently
verify the inclusion of any event on the other chain.

While the Rainbow bridge allows trustless cross-chain transfers, it has multiple performance
and security drawbacks. First, the relays need to constantly forward Ethereum and NEAR headers
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to the smart contracts and this comes at a large gas cost on both chains. Second, to avoid an ever-
growing state of the NEAR contract, the bridge limits the number of synced headers to only seven
days. If the contract also limits the verification to only the seven-day log, then this significantly
lowers the security of the light client as a malicious Ethereum relay can now create a fake chain of
only seven days worth of headers appended to a valid prefix and present it to the NEAR contract.
If the contract also incorporates previous seven-day logs from old blocks on the NEAR blockchain,
then the large gas cost overhead would again come into play. Third, Rainbow’s Ethereum contract
does not verify all validator signatures on every NEAR header submitted to the contract.

XCLAIM [25]. XCLAIM is a framework for trustless, cross-chain exchanges, where a smart con-
tract on each chain governs the exchanges between the two chains (e.g., Bitcoin and Ethereum)
and punishes malicious parties by seizing their collateral in favor of honest parties. The XCLAIM
model consists of three main entities: A client who wishes to move funds from Bitcoin to Ethereum,
a vault that locks the Bitcoin funds received from the client, and an Ethereum relay contract known
as BTCRelay [26] which stores Bitcoin block headers to allow verification of SPV proofs.

The protocol starts with the vault locking up sufficient collateral on the Ethereum smart contract.
The client then sends her Bitcoins to the vault and submits a proof to the contract showing that the
transaction has been recorded on the Bitcoin blockchain. The chain relay verifies this proof and
confirms to the contract that the lock has been executed correctly. Finally, the contract releases
Ethereum tokens to Alice.

tBTC [27]. tBTC is a multi-wallet, multi-signer protocol that provides a BTC-backed bearer asset
on Ethereum. tBTC attempts to remove single points of failure by geographically distributing
signers and aiming for a multi-wallet scheme. The signers use a multi-party threshold ECDSA
protocol to collectively create a signing group wallet which is created by randomly selecting a
set of signers from the eligible pool of signers. tBTC relies on collateral to prevent signers from
deviating the protocol as in the following cases: (1) To liquidate deposits in case they are in
danger of undercollateralization; (2) To punish a signing group if it signs an unauthorized piece
of data is once distributed key generation is complete; (3) To punish a signing group that fails to
produce a signature for the system when requested; and (4) To ensure a depositor is refunded if
the signing group fails to form. As a result, tBTC requires a complicated mechanism for detecting
and dealing with undercollateralized signers.

Waterloo [28]. Kyber’s Waterloo is a cross-chain bridge between Ethereum and EOS [29]. An
Ethereum smart contract serves as a light client that only verifies EOS block headers. The con-
sensus protocol of EOS is based on the delegated PoSmechanism [30], where EOS token holders
continuously vote (i.e., delegate) for their favorite block producers. Instead of relaying all EOS
block headers, the Waterloo relay only relays the changes in the set of EOS block producers.

2.3 Harmony Blockchain
We build our solution for transferring assets from a BFT blockchain to a PoW blockchain in the
context of the Harmony blockchain [14] as our BFT protocol and Ethereum as our PoW blockchain.
Harmony is a sharded PoS blockchain protocol inspired by research results including but not lim-
ited to RapidChain [8] and OmniLedger [9]. The protocol execution is divided into predetermined
time intervals (e.g., 24 hours), known as epochs. In each epoch, the network is partitioned into a
set of shards each of which maintains a separate blockchain in parallel to other shards.
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The validators of shards are randomly sampled using a distributed random generation (DRG)
protocol executed at the end of every epoch by a special shard known as the beacon shard,
which itself gets re-elected in every epoch. The beacon shard is also where the configuration of
the network (i.e., validator identities and shard assignments) are stores. Moreover, the beacon
shard is where token holders deposit their stakes to become validators in the consensus protocol.

Each epoch consists of multiple executions of a BFT consensus protocol in each shard, where
a block of transactions is generated and appended to the shard’s chain after every execution. The
set of validators and shards is fixed throughout each epoch but may change between epochs
based on a shard reconfiguration protocol executed by the beacon shard at the end of each
epoch. The last block of the beacon chain in every epoch is called an epoch block which stores
the identities (i.e., public keys) of all shard members for the next epoch. Each identity consists of
the node’s ECDSA address, its BLS public key, and its stake in the consensus, represented as a
decimal number between 0 and 1.

For every BFT consensus execution, a leader is selected based on the randomness generated
by the DRG at the end of the previous epoch.1 In every run of the consensus protocol, the leader
runs the aggregate BLS signature protocol of Boneh et al. [33,34] to collect the validators’ votes
in a constant-sized, threshold aggregate signature and then broadcast it to the shard. The ag-
gregate signature is included in the block header for later block verification. After the new block
is committed to the shard chain (i.e., the chain maintained by the shard), the shard validators
send the block header to the beacon shard who verifies the header contents (i.e., the previous
hash and the aggregate signature) and broadcast it to all shards to facilitate future cross-shard
verification.

3 Our Solution
Consider a client C who wants to perform a cross-chain transaction 𝑋A→B to transfer an amount 𝑥
of her coins from blockchain A (i.e., the Harmony blockchain) to blockchain B (e.g., the Ethereum
blockchain). Our bridge protocol consists of a smart contract S deployed on blockchain B as well
as a relay node Rwho periodically syncs Swith epoch block headers from A. As shown in Figure 2,
our protocol consists of two parts: (1) Relay/contract sync, and (2) Cross-chain transaction. In
the following sections, we describe each part in detail.

3.1 Relay/Contract Sync
At the end of each epoch (i.e., every 24 hours), R sends to the contract the most recent epoch
block header 𝐵𝑖 which is maintained by the beacon shard. This block contains sufficient informa-
tion to allow the contract to later verify the inclusion of any transaction on A. In our bridge protocol,
the contract verifies the inclusion of a burn transaction, denoted by 𝑇burn, submitted by the client.
𝑇burn essentially transfers 𝑥 coins on A to a null address, i.e., deletes the coins permanently. We
refer to an inclusion proof for a burn transaction as a proof of burn (PoB).

For ease of presentation and without loss of generality, we consider only one shard (i.e., the
beacon shard) and describe our protocol for the case when 𝑇burn is recorded on the beacon

1Harmony’s DRG uses a verifiable random function (VRF) [31] in conjunction with a verifiable delay function
(VDF) [32] construction to generate randomness with linear communication complexity and delay the revelation of
the randomness generated by the VRF to prevent a malicious leader from biasing the randomness by cherry-picking
a subset of the VRF random numbers initially generated by the validators [14].
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Figure 1: Our Cross-Chain Bridge Protocol

chain.2

Proofs of Burn (PoB). An inclusion proof for 𝑇burn should convince the verifier (i.e., the contract)
that (1) The transaction is included in a block with header 𝐵𝑘 , and (2) The block corresponding
to 𝐵𝑘 is included on A’s chain. The former can be proved using a transaction Merkle proof and
verified using the Merkle root stored in 𝐵𝑘 . The latter, however, requires a new chain commitment
added to the epoch block 𝐵𝑖 . Inspired by FlyClient [3], we use a Merkle tree variant, known as
a Merkle Mountain Range (MMR) [24], over all block headers added to the blockchain between
two epoch blocks. This allows S to verify the inclusion of 𝐵𝑘 within the epoch using the root of the
MMR stored at 𝐵𝑖 .

Checkpoint Blocks. The confirmation latency of a cross-chain transaction depends mainly on
the rate at which R submits epoch block headers to S. Since one epoch block is created every 24
hours, then a cross-chain transaction would take about 12 hours to be confirmed in expectation.
To reduce the confirmation latency, we propose to create periodic checkpoint blocks in the middle
of epochs on A. A block is called a checkpoint block if its header contains an MMR root calculated
over all block headers added to the chain since the previous checkpoint block. Therefore, epoch
blocks are considered checkpoint blocks.

Every checkpoint block header 𝐵𝑖 includes the following fields the first four of which are in-
cluded in all blocks:

1. Block height 𝑖,
2. Quorum signature 𝐵𝑖 .sig, an aggregate BLS signature created by the consensus validators,
3. Quorum public keys 𝐵𝑖 .pks, which lists the public key address of every consensus validator,
4. Transaction Merkle root 𝐵𝑖 .tmr created on all transaction included in 𝐵𝑖 ,
5. Checkpoint Merkle root 𝐵𝑖 .cmr created on all block header between 𝐵𝑖−Δ and 𝐵𝑖 , where Δ is

the block distance between two checkpoint blocks.
2In the Harmony blockchain, the beacon shard also grows a transaction chain similar to other shards.
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Cross-Chain Bridge Protocol (Horizon)

Client C performs a cross-chain transaction 𝑋A→B to transfer an amount 𝑥 of her coins from blockchain A
to blockchain B. Smart contract S on B verifies and unlocks the transferred coins, and relay R periodically
syncs S with checkpoint data from A.

Relay/Contract Sync
Let addrR denote R’s wallet address on B. The following protocol is executed between R and S:

1. At every checkpoint block header 𝐵𝑖 , relay R sends a sync transaction 𝑇sync to S, where
𝑇sync : (addrR → null;𝐵𝑖 ) .

𝐵𝑖 includes block height 𝑖, quorum signature 𝐵𝑖 .sig, quorum public keys 𝐵𝑖 .pks, and Merkle root
𝐵𝑖 .cmr created on all block header between 𝐵𝑖−Δ and 𝐵𝑖 , where Δ is the block distance between
two checkpoint blocks.

2. Upon receiving 𝑇sync from R, contract S replaces R and aborts if any of the followings are true:
(a) 𝑖 ≠ 𝑗 + 1, where 𝑗 is the height of the last checkpoint block received, or
(b) QuorumVerify(𝐵𝑖 .sig, 𝐵 𝑗 .pks) = 0.
Otherwise, S stores 𝐵𝑖 in the contract’s state.

Cross-Chain Transaction
Let addrC denote client C’s wallet address on both A and B. The client performs the following protocol
with full node F and contract S:

Stage I: Burn

1. C sends a burn transaction 𝑇burn : addrC
𝑥−→ null to A to burn 𝑥 of her coins on A.

2. C sends [PoB-Request, ℎ] to F, where ℎ = H(𝑇burn).
3. Upon receiving [PoB-Request, ℎ] from C, full node F performs the following steps:

(a) Find block header 𝐵𝑘 on A that includes the hash of transaction ℎ;
(b) Generate a Merkle proof Π𝐵 using checkpoint Merkle root 𝐵𝑖 .cmr, where 𝑘 ∈ (𝑖 − Δ, 𝑖];
(c) Generate a Merkle proof Π𝑇 using transaction Merkle root 𝐵𝑘 .tmr;
(d) Send [PoB,Πburn, 𝑖, 𝐵𝑘 ] to C, where Πburn = (Π𝐵,Π𝑇 ).

4. Upon receiving [PoB,Πburn, 𝑖, 𝐵𝑘 ] from F, client C sends an unlock transaction 𝑇unlock to S, where
𝑇unlock : (null 𝑥−→ addrC; 𝑇burn; Πburn; 𝑖; 𝐵𝑘 ) .

5. If 𝑇unlock fails, then C picks a different full node and repeats from Step I–2.

Stage II: Unlock
6. Upon receiving 𝑇unlock : (null 𝑥−→ addrC; 𝑇burn; Πburn; 𝑖; 𝐵𝑘 ), contract S does the following steps:

(a) Parse Πburn as (Π𝐵,Π𝑇 );
(b) Fetch 𝐵𝑖 from contract’s state;
(c) Abort if any of the following conditions are true:

– 𝑇burn .sender ≠ 𝑇unlock .receiver, 𝑇burn .amount ≠ 𝑥 ,
– MerkleVerify(Π𝐵, 𝐵𝑘 , 𝐵𝑖 .cmr) = 0, where 𝐵𝑖 .cmr is checkpoint Merkle root,
– MerkleVerify(Π𝑇 ,𝑇burn, 𝐵𝑘 .tmr) = 0, where 𝐵𝑘 .tmr is 𝐵𝑘 ’s transactions Merkle root.

(d) Unlock 𝑥 to addrC’s balance.

Figure 2: Cross-Chain Bridge Protocol
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Checkpoint Verification. At every checkpoint block header 𝐵𝑖 , the relay sends a sync transaction
𝑇sync to S as defined in Figure 2. Upon receiving𝑇sync from R, contract S verifies that the checkpoint
information is valid, otherwise it replaces R with another relay and aborts. Namely, S does the
replacement and aborts if any of the following conditions are true:

1. 𝑖 ≤ 𝑗 , where 𝑗 is the height of the last checkpoint block received,

2. QuorumVerify(𝐵𝑖 .sig, 𝐵𝑖 .pks) = 0,

Otherwise, S stores 𝐵𝑖 in the contract’s state for future cross-chain verification requests.

3.2 Cross-Chain Transaction
This part of the protocol is initiated by the client C submitting 𝑇burn to blockchain A. Once the
transaction is confirmed on A, C sends a request to a full node F who always maintains a full,
up-to-date copy of A’s chain. Upon receiving the request, F finds the block 𝐵𝑘 that includes 𝑇burn.
Then, it generates two Merkle proofs Π𝐵 and Π𝑇 that together form the PoB, denoted by Πburn.
The former is generated using the checkpoint Merkle root cmr𝑖 stored at the first checkpoint block
after 𝐵𝑘 , denoted by 𝐵𝑖 . The latter is generated using the transaction Merkle root 𝐵𝑘 .tmr. Finally, F
sends Πburn, 𝑖, and 𝐵𝑘 to C who creates an unlock transaction 𝑇unlock and submits it to blockchain
B. Since the full node is not trusted, this transaction may fail, in which case the client replaces F
with another full node and repeats the process.

PoB Verification and Asset Unlocking. Upon receiving 𝑇unlock, contract S fetches 𝐵𝑖 from its state
(checkpoint block height 𝑖 is specified by C in 𝑇unlock) and verifies the validity of the burn trans-
action against the unlock transaction through the checks listed in Figure 2. If all checks are
successful, then the contracts unlocks 𝑥 tokens on B (maintained on S’s state) and delivers them
to C’s address on B.

3.3 Multi-Relay Model
The single-relay bridge model exposes cross-chain transactions to denial-of-service scenarios
which could make the bridge protocol completely non-functional. One may alternatively choose
to employ a group of relay nodes which redundantly submit the same checkpoint information to
the smart contract. Unfortunately, this significantly increases the gas cost of relaying information
to the contract as it needs to compare/store an amount of information that grows linearly with the
redundancy factor (i.e., the number of relays).

Instead of multiple relay nodes actively submitting checkpoint information to the contract at
the same time, we propose to have only one node relay the information at any time and have the
other 𝑛−1 relays read and verify the contract’s state after every regular relay event. If the first relay
fails to send proper checkpoint information, the second relay would take its role and so forth.

3.4 Stateless Bridge Contract
In some scenarios, one may prefer to implement a bridge protocol without a relay. For example, if
the number of cross-chain transactions is small, it might not justify the overhead (i.e., the gas cost)
of constantly sending checkpoint information to the smart contract. That’s because the number
of checkpoint blocks grows linearly with the chain length.

9



Horizon: A Trustless Bridge for Cross-Chain Transactions

On the other hand, due to the block gas limit, the client cannot include the list of checkpoint
blocks for the entire chain in its unlock transaction𝑇unlock. While the client can split the transaction
data into multiple transactions/blocks to avoid the gas limit issue, this strategy likely still results
in an unreasonable gas cost for a single cross-chain transactions. Moreover, splitting a trans-
action across multiple blocks requires waiting for multiple block intervals, and thus significantly
increasing the latency of the overall transaction.

To allow relay-free cross-chain transactions, we propose to add another layer of chain commit-
ments to every checkpoint block in the form of an MMR constructed over all checkpoint blocks.
This allows the prover (i.e., the client) to prove to the verifier (i.e., the contract) that a checkpoint
block is included in a missing chain of checkpoint blocks. The client proof now consists of the
following information:

1. The header of the block 𝐵tx containing 𝑇burn.
2. The header of the first checkpoint block 𝐵cp after 𝐵tx.
3. A Merkle proof showing that 𝑇burn was included in 𝐵tx.
4. A Merkle proof showing that 𝐵cp was included in the chain of checkpoint blocks.
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