Public

e PeckShield

SOFTWARE AUDIT REPORT

for

HARMONY

Prepared By: Shuxiao Wang

PeckShield
Jan. 17, 2021

1/62 PeckShield Audit Report #: 2019-22

sxwang@peckshield.com

Public

Document Properties

Client Harmony

Title Software Audit Report

Target Harmony Blockchain

Version 1.0

Author Jeff Liu

Auditors Edward Lo, Ruiyi Zhang, Xudong Shao, Jeff Liu

FEVENEGROAS Chiachih Wu

AVSI oA Xuxian Jiang

Classification B

Version Info

ersic PDate A 0 De DtIo
1.0 Jan. 17, 2021 | Jeff Liu Final Release Version
0.4 Jul. 06, 2020 | Jeff Liu Update Finding Status
0.3 Apr. 22, 2020 | Jeff Liu More Findings Added
0.2 Jan. 08, 2020 | Jeff Liu Add Two Findings
0.1 Sep. 30, 2019 | Jeff Liu Initial Draft
Contact

For more information about this document and its contents, please contact PeckShield Inc.

Shuxiao Wang

+86 173 6454 5338

contact@peckshield.com

2/62

PeckShield Audit Report #: 2019-22

Public

Contents

1 Introduction 5
1.1 About Harmony Blockchain 5
1.2 About PeckShield 6
1.3 Methodology 6
1.3.1 Risk Model 7

1.3.2 Fuzzing e 7

1.3.3 White-box Audit 8

1.4 Disclaimer e 10

2 Findings 12
2.1 Finding Summary 12
22 Key Findings e 14

3 Detailed Results 17
3.1 Missing Sanity Check When Adding Cross Shard Receipts 17
3.2 Missing Penalty When Leaders Not Processing Cross Shard Receipts 18
3.3 Out-of-Bounds Access in the P2P Module - #1 20
3.4 Out-of-Bounds Access in the P2P Module - #2 22
3.5 Out-of-Bounds Access in the P2P Module - #3 24
3.6 DoS Vulnerability in the P2P Module - #1 27
3.7 DoS Vulnerability in the P2P Module - #2 30
3.8 Integer Overflow in the RPC Module 33
3.9 Consensus Suspending in the Consensus Module - #1 35
3.10 Out-of-Memory in the Consensus Module - #1 37
3.11 Out-of-Memory in the Consensus Module - #2 40
3.12 Consensus Suspending in the Consensus Module - #2 44
3.13 Consensus Suspending in the Consensus Module - #3 46
3.14 Missing Sanity Check on Slash Records - #1 53
3.15 Missing Sanity Check on Slash Records - #2 57

3/62

PeckShield Audit Report #: 2019-22

Public

4 Conclusion 60

References 61

4/62 PeckShield Audit Report #: 2019-22

Public

1 Introduction

Given the opportunity to review the Harmony Blockchain design document and related source code,
we in this report outline our systematic method to evaluate potential security issues in the Harmony
Blockchain implementation, expose possible semantic inconsistency between the source code and
the design specification, and provide additional suggestions and recommendations for improvement.
Our results show that the given branch of Harmony Blockchain can be further improved due to the
presence of several issues related to either security or performance. This document describes our

audit results in detail.

1.1 About Harmony Blockchain

Harmony [1] is a high performance, sharding-based blockchain developed by Harmony company,
and its Day ONE mainnet was launched on June 28th, 2019. The goal of Harmony blockchain
is to deliver scalability without sacrificing decentralization, with innovations in consensus, systems,
and networking layers. Harmony uses a PBFT based consensus algorithm, named Fast Byzantine
Fault Tolerance (FBFT), and PoS-based Sharding as a scalability solution. Harmony's randomness
generation function is a combination of Verifiable Random Function (VRF) and Verifiable Delay
Function (VDF).
The basic information of Harmony Blockchain is as follows:

Table 1.1: Basic Information of Harmony Blockchain

Issuer | Harmony
Website | https://harmony.one
Type | Harmony Blockchain
Platform | Go, C++, Solidity

Audit Method | White-box
Latest Audit Report | Jan. 17, 2021

5/62 PeckShield Audit Report #: 2019-22

Public

The audited Git repositories and the commit hash values are as follows:

Table 1.2: The Commit Hash List Of Audited Branches

Git Repository ‘ Commit Hash Of Audited Branch
https://github.com/harmony-one/harmony | 00b3abe94f9b3c29c34723973266943b1e9266al
https://github.com/harmony-one/vdf b6aa89d16fd0d4f59b26c96dd1db6f35960222bf
https://github.com/harmony-one/bls 7d37e0af371482e08e32a7cb1f0a9d0a71d7b03f
https://github.com/harmony-one/ida 2993dd502a3de9d1aaa530717a334b8371539b32

1.2 About PeckShield

PeckShield Inc. [2] is a leading blockchain security company with the goal of elevating the security,
privacy, and usability of current blockchain ecosystem by offering top-notch, industry-leading services
and products including security audits. We are reachable at Telegram (https://t.me/peckshield),
Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

1.3 Methodology

In the first phase of auditing Harmony Blockchain, we use fuzzing to find out the corner cases NOT
covered by in-house testing. Next we do white-box auditing, in which PeckShield security auditors
manually review Harmony Blockchain design and source code, analyze them for any potential issues,
also follow up with issues found in the fuzzing phase. We also design and implement test cases to
further reproduce and verify the issues if necessary. In the following subsections, we will introduce
the risk model as well as the audit procedure adopted in this report.

Table 1.3: Vulnerability Severity Classification

High Medium

Medium

Impact

Low

High Medium

Likelihood

6/62 PeckShield Audit Report #: 2019-22

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

1.3.1 Risk Model

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [3]:

e Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

e Impact measures the technical loss and business damage of a successful attack;

e Severity demonstrates the overall criticality of the risk;

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.3.

1.3.2 Fuzzing

In the first phase of our audit, we use fuzzing to find out possible corner cases or unusual inter-module
interactions that may not be covered by in-house testing.

Fuzzing or fuzz testing is an automated software testing technique of discovering software vulner-
abilities by providing unintended input to the target program and monitoring the unexpected results.
As one of the most effective methods for exploiting vulnerabilities, fuzzing technology has been the
first choice for many security researchers to discover vulnerabilities in recent years. At present, there
are many fuzzy testing tools and supporting software, which can help security personnels to com-
plete fuzzing and find vulnerabilities more efficiently. Based on the characteristics of the Harmony
Blockchain, we use AFL [4] and go-fuzz [5] as the primary tool for fuzz testing.

AFL (American Fuzzy Lop) is a security-oriented fuzzer that employs a novel type of compile-
time instrumentation and genetic algorithms to automatically discover clean, interesting test cases
that trigger new internal states in the targeted binary. Since its inception, AFL has gained growing
popularity in the industry and has proved its effectiveness in discovering quite a few significant
software bugs in a wide range of major software projects. The basic process of AFL fuzzing is as

follows:
e Generate compile-time instrumentation to record information such as code execution path;

e Construct some input files to join the input queue, and change input files according to different

strategies;

e Files that trigger a crash or timeout when executing an input file are logged for subsequent

analysis;

7/62 PeckShield Audit Report #: 2019-22

Public

e Loop through the above process

Throughout the AFL testing, we will reproduce each crash based on the crash file generated by
AFL. For each reported crash case, we will further analyze the root cause and check whether it is
indeed a vulnerability. Once a crash case is confirmed as a vulnerability of the Harmony Blockchain,
we will further analyze it as part of the white-box audit.

go-fuzz is a fuzzing tool inspired by AFL, for code written in Go language. It's a coverage guided
fuzzing solution and mainly applicable to packages that parse complex inputs (both text and binary),
and is especially useful for hardening of systems that parse inputs from potentially malicious users

(e.g., anything accepted over a network).

1.3.3 White-box Audit

After fuzzing, we continue the white-box audit by manually analyzing source code. Here we test
target software’s internal structure, design, coding, and we focus on verifying the flow of input and
output through the application as well as examining possible design and implementation trade-offs
for strengthened security. PeckShield auditors first fully review and understand the source code, then
we create specific test cases, execute them and analyze the results. Issues such as internal security
holes, unexpected output, broken or poorly structured paths, etc., in the targeted software will be
inspected.

Blockchain is a secure method of creating a distributed database of transactions, and three major
technologies of blockchain are cryptography, decentralization, and consensus model. Blockchain does
come with unique security challenges, and based on our understanding of blockchain general design,
during this audit we divide the blockchain software into the following major areas and inspect each

of them:

e Data and state storage, which is related to the database and files where blockchain data are

saved.

e P2P networking, consensus, and transaction model, which is the networking layer. Note that

the consensus and transaction logic is tightly coupled with networking.

e VM, account model, and incentive model. These are the execution and business layer of the

blockchain, and many blockchain business specific logic is concentrated here.

e System contracts and services. These are system-level, blockchain-wide operation management

contracts and services.

e Others. Software modules not included above are checked here, such as common crypto or
other 3rd-party libraries, best practice or optimization used in other software projects, design

and coding consistency, etc.

8/62 PeckShield Audit Report #: 2019-22

Public

Table 1.4: The Full List of Audited ltems

Category - Check Item
Blockchain Database Security
Database State Integrity Check

Data and State Storage

Default Configuration Security

Node Operation Default Configuration Optimization

Node Upgrade And Rollback Mechanism
External RPC Implementation Logic
External RPC Function Security

Node P2P Protocol Implementation Logic
Node P2P Protocol Security

Node Communication Serialization/Deserialization
Invalid/Malicious Node Management Mechanism
Communication Encryption/Decryption
Eclipse Attack Protection

Fingerprint Attack Protection

Consensus Algorithm Scalability
Consensus Consensus Algorithm Implementation Logic
Consensus Algorithm Security

Transaction Privacy Security

Transaction Model Transaction Fee Mechanism Security
Transaction Congestion Attack Protection

VM Implementation Logic

VM Implementation Security

VM Sandbox Escape

VM Stack/Heap Overflow

Contract Privilege Control

Predefined Function Security

Status Storage Algorithm Adjustability
Account Model Status Storage Algorithm Security
Double Spending Protection

VM

] System Contracts And Services \ System Contracts Security

Third Party Library Security

Memory Leak Detection

Exception Handling

Log Security

Coding Suggestion And Optimization

White Paper And Code Implementation Uniformity

Others

9/62 PeckShield Audit Report #: 2019-22

Public

Based on the above classification, here is the detailed list of the audited items as shown in Table
1.4,

To better describe each issue we identified, we also categorize the findings based on Common
Weakness Enumeration (CWE-699) [6], which is a community-developed list of software weakness
types to better classify and organize weaknesses around concepts frequently encountered in software

development. We use the CWE categories in Table 1.5 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given blockchain
software, i.e., the evaluation result does not guarantee the nonexistence of any further findings of
security issues. As one audit cannot be considered comprehensive, we always recommend proceeding
with several independent audits and a public bug bounty program to ensure the security of blockchain

software. Last but not least, this security audit should not be used as investment advice.

10/62 PeckShield Audit Report #: 2019-22

Public

Table 1.5: Common Weakness Enumeration (CWE) Classifications Used In This Audit

Category
Configuration

\ Summary
Weaknesses in this category are typically introduced during
the configuration of the software.

Data Processing Issues

Weaknesses in this category are typically found in functional-
ity that processes data.

Numeric Errors

Weaknesses in this category are related to improper calcula-
tion or conversion of numbers.

Security Features

Weaknesses in this category are concerned with topics like
authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software)

Time and State

Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management

Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Problems

Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic

Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup

Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters

Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues

Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices

Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

Input Validation Issues

Weaknesses in this category are related to a software system'’s
input validation components.

11/62

PeckShield Audit Report #: 2019-22

Public

2 Findings

2.1 Finding Summary

Here is a summary of our findings after analyzing Harmony Blockchain. During the first phase of
our audit, we studied Harmony source code and ran our in-house static code analyzer through the
codebase, focused on the Harmony VM and crypto libraries. Next, we audited the general token
transfer, staking, and consensus logics. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tools. We further manually review
business logics, examine system operations, and place operation specific aspects under scrutiny to
uncover possible pitfalls and/or bugs. We have so far identified a list of potential issues: some
of them involve subtle corner cases that might not be previously thought of, while others refer to
unusual interactions among multiple modules.

For each uncovered issue, we have therefore developed test cases for reasoning, reproduction,
and/or verification. After further analysis and internal discussion, as summarized in table 2.1, we
determined 15 issues of that need to be brought up and pay more attention to, which are categorized
in the table 2.2. More information can be found in the next subsection.

Here we also include screenshots of the current status of fuzzing. Figure 2.1 is a screenshot of a
running AFL fuzzer which is testing the b1s library. And, Figure 2.4 is the screenshot of a running Go-
fuzz fuzzer which is testing the Harmony VM. We examine these parameters regularly, and whenever

the unig crashes increases, we look into the input which triggers the new unique crash. Once an

Severity # of Findings

Critical V| HNEEEEEEER
High 2| N

Medium 2| A

Low 0

Informational 1| W

Total 15

Table 2.1: The Severity of Our Findings

12/62 PeckShield Audit Report #: 2019-22

Public

issue that triggers crash is determined to be valid, further investigation will follow to root-cause and

formulate fix recommendation for it.

Table 2.2: Key Audit Findings

ID Severity Title | Category ~ Status

PVE-001 Medium Missing Sanity Check When Adding Coding Practices Fixed
Cross Shard Receipts

PVE-002 | Informational | Missing Penalty When Leaders Not | Behavioral Problems | Confirmed
Processing Cross Shard Receipts

PVE-003 Critical Out-of-Bounds Access in the P2P Coding Practices Fixed
Module - #1

PVE-004 Critical Out-of-Bounds Access in the P2P Coding Practices Fixed
Module - #2

PVE-005 Critical Out-of-Bounds Access in the P2P Coding Practices Fixed
Module - #3

PVE-006 Critical DoS Vulnerability in the P2P Module | Behavioral Problems Fixed
- #1

PVE-007 Critical DoS Vulnerability in the P2P Module Coding Practices Fixed
- #2

PVE-008 Medium Integer Overflow in the RPC module Coding Practices Fixed

PVE-009 Critical Consensus Suspending in the Con- | Behavioral Problems Fixed
sensus Module - #1

PVE-010 Critical Out-of-Memory in the Consensus | Behavioral Problems Fixed
Module - #1

PVE-011 Critical Out-of-Memory in the Consensus | Behavioral Problems Fixed
Module - #2

PVE-012 Critical Consensus Suspending in the Con- | Behavioral Problems Fixed
sensus Module - #2

PVE-013 High Consensus suspending in the Consen- | Input Validation Issues Fixed
sus Module - #3

PVE-014 Critical Missing Sanity Check on Slash | Input Validation Issues Fixed
Records - #1

PVE-015 High Missing Sanity Check on Slash | Behavioral Problems Fixed

Records - #2

13/62

PeckShield Audit Report #: 2019-22

Public

2.2 Key Findings

We conducted our audit of the Harmony design and implementations, starting with Harmony VM
and crypto libraries, after that we audited general token transfer, staking, and consensus logics. After
analyzing all of the potential issues found during the audit, we determined that a number of them
need to be brought up and pay more attention to, as shown in Table 2.2. Please refer to Section 3
for detailed discussion of each vulnerability.

Harmony's VM is fully compatible with Ethereum VM (Constantinople), and they plan to support
Wasm after mainnet launch. We worked through the Harmony VM code, and didn't find any fix
missing for known Ethereum VM issues. We fed the Harmony VM through the go-fuzz tool, found
two crashes and later determined to be caused by timeout. Further investigation found that they
were timing issues related to go-fuzz, and there was no similar issue running Harmony VM directly.
Therefore, we marked them as false warnings. The total coverage is pretty high, as shown in Figure
2.3, and the current status of the go-fuzz result is shown in Figure 2.4.

BLS signature scheme [7] is an excellent multisig solution which has some good properties com-
pared to ECDSA [8] and Schnorr [9]. Harmony adopted the open source C++ BLS implementa-
tion [10] which has a harness that enables the integration with Golang software. We started our
audit work with AFL fuzzing. Specifically, we used afl-clang++ to compile the bls source code,
which instruments the library as shown in Figure 2.2. Then, with a simple seed input, we started
fuzzing the instrumented BLS as shown in Figure 2.1. During the first phase of our audit, we did not
find any issue in the BLS library through AFL fuzzing. In the next phase, we will firstly try to improve
the code coverage of fuzzing. Later, we will manually test and review the BLS implementation.

The other part of crypto libraries included in our first phase audit is the implementation of VDF,
which is an essential component to provide trustworthy randomness on Harmony blockchain. With
the trustworthy on-chain randomness, the blockchain would be able to safely support numerous
applications such as dice dapps without an oracle mechanism. This is not a guaranteed feature
on most blockchains. In many cases, the wrong implementations of on-chain mechanism caused
tremendous financial damages [11, 12]. Our target here is a Golang implementation of Benjanmin
Wesolowski's paper [13]. We started testing the library with the example src/test/vdf_module_test.go

in this phase. In the next phase, we will apply go-fuzz on it as well.

14/62 PeckShield Audit Report #: 2019-22

Public

american fuzzy lop 2.52b (bls256_test.exe)

process timing overall results
run time : @ days, @ hrs, 34 min, 50 sec cycles done : 33
last new path : @ days, @ hrs, 1 min, 38 sec total paths : 34
last uniq crash none seen yet uniq crashes : 0
last uniq hang : none seen yet uniq hangs 0
cycle progress map coverage
now processing : 30* (88.24%) map density : 1.32% / 1.34%
paths timed out : @ (0.00%) count coverage : 1.34 bits/tuple
stage progress findings in depth
now trying : interest 16/8 favored paths : 5 (14.71%)
stage execs : 5140/43.8k (11.75%) new edges on 2 (5.88%)
total execs : 470k total crashes : @ (@ unique)
exec speed : 218.1/sec total tmouts @ (0 unique)
fuzzing strategy yields path geometry
bit flips : 4/16.8k, 1/16.7k, 1/16.7k levels : 5
byte flips : 0/2096, 0/2066, 1/2023 pending : 5
arithmetics 2/117k, @/4528, 0/2004 pend fav : 0
known ints : 0/11.8k, 0/22.9k, 1/34.9k own finds : 33
dictionary : 0/0, 0/0, 0/0 imported : n/a
havoc : 19/163k, 4/50.0k stability 5
trim : 0.00%/962, 0.00%
[cpu: 37%]

Figure 2.1: AFL Screenshot

[+] Instrumented 5630 locations (64-bit, non-hardened mode, ratio 108%).

ar r 1ib/1ibbls256.a obj/bls_c256.0

ar: creating archive lib/1ibb1s256.a

../../af1-2.52b/af1l-clang++ -shared -o lib/libbls256.dylib obj/bls_c256.0 -L/Users/cwul®/harmony-one/harmony-bls-work/bls/../mcl/1ib -1mcl -1lgmp -lgmpxx -L/usr/local/o
pt/openssl/lib -lcrypto -lstdc++

afl-cc 2.52b by <lcamtuf@google.com>

../../af1-2.52b/afl-clang++ -I/usr/local/opt/openssl/include -I/usr/local/opt/gmp/include -g3 -Wall -Wextra -Wformat=2 -Wcast-qual -Wcast-align -Wwrite-strings -Wfloat
-equal -Wpointer-arith -mé4 -I include -I test -fomit-frame-pointer -DNDEBUG -03 -fPIC -std=c++11 -I/Users/cwul®/harmony-one/harmony-bls-work/bls/../mcl/include -c sr
c/bls_c384.cpp -0 obj/bls_c384.0 -MMD -MP -MF obj/bls_c384.d

afl-cc 2.52b by <lcamtuf@google.com>

afl-as 2.52b by <lcamtuf@google.com>

[+] Instrumented 5631 locations (64-bit, non-hardened mode, ratio 100%).

ar r lib/1ibbls384.a obj/bls_c384.0

ar: creating archive lib/1ibbls384.a

../../af1-2.52b/af1-clang++ -shared -o 1ib/1ibbls384.dylib obj/bls_c384.0 -L/Users/cwul@/harmony-one/harmony-bls-work/bls/../mcl/1lib -1mcl -1gmp -lgmpxx -L/usr/local/o
pt/openssl/lib -lcrypto -lstdc++

afl-cc 2.52b by <lcamtuf@google.com>

../../af1-2.52b/af1-clang++ -I/usr/local/opt/openssl/include -I/usr/local/opt/gmp/include -g3 -Wall -Wextra -Wformat=2 -Wcast-qual -Wcast-align -Wwrite-strings -Wfloat
-equal -Wpointer-arith -m64 -I include -I test -fomit-frame-pointer -DNDEBUG -03 -fPIC -std=c++11 -I/Users/cwul@/harmony-one/harmony-bls-work/bls/../mcl/include -c sr
c/bls_c384_256.cpp -o obj/bls_c384_256.0 -MMD -MP -MF obj/bls_c384_256.d

afl-cc 2.52b by <lcamtuf@google.com>

afl-as 2.52b by <lcamtuf@google.com>

[+] Instrumented 5631 locations (64-bit, non-hardened mode, ratio 100%).

ar r lib/1ibbls384_256.a obj/bls_c384_256.0

ar: creating archive 1ib/1ibb1s384_256.a

../../af1-2.52b/af1l-clang++ -shared -o lib/1ibbls384_256.dylib obj/bls_c384_256.0 -L/Users/cwul@/harmony-one/harmony-bls-work/bls/../mcl/1ib -lmcl -1gmp -lgmpxx -L/usr
/local/opt/openssl/1ib -lcrypto -lstdc++

afl-cc 2.52b by <lcamtuf@google.com>

../../af1-2.52b/af1-clang++ -I/usr/local/opt/openssl/include -I/usr/local/opt/gmp/include -g3 -Wall -Wextra -Wformat=2 -Wcast-qual -Wcast-align -Wwrite-strings -Wfloat
-equal -Wpointer-arith -m64 -I include -I test -fomit-frame-pointer -DNDEBUG -03 -fPIC -std=c++11 -I/Users/cwul@/harmony-one/harmony-bls-work/bls/../mcl/include -c sr
c/bls_c512.cpp -0 obj/bls_c512.0 -MMD -MP -MF obj/bls_c512.d

afl-cc 2.52b by <lcamtuf@google.com>

afl-as 2.52b by <lcamtuf@google.com>

[+] Instrumented 5620 locations (64-bit, non-hardened mode, ratio 100%).

ar r 1ib/1ibb1s512.a obj/bls_c512.0

ar: creating archive lib/libbls512.a

../../af1-2.52b/afl-clang++ -shared -o 1ib/1ibb1ls512.dylib obj/bls_c512.0 -L/Users/cwul®@/harmony-one/harmony-bls-work/bls/../mcl/1ib -lmcl -1gmp -lgmpxx -L/usr/local/o
pt/openssl/lib -lcrypto -lstdc++

afl-cc 2.52b by <lcamtuf@google.com>

Figure 2.2: AFL Instrumentation

15/62 PeckShield Audit Report #: 2019-22

Public

fgo_project/src/github.com/harmony-one/harmony/core/vm/analysis.go (100.0%)
fgo_project/src/github.com/harmony-one/harmony/core/vm/common.go (95.5%)
fgo_project/src/github.com/harmony-one/harmony/core/vm/contract.go (97.7%)
lgo_project/src/github.com/harmony-one/harmony/core/vm/contracts.go (83.7%)
lgo_project/src/github.com/harmony-one/harmony/core/vm/evm.go (83.7%)
Igo_project/src/github.com/harmony-one/harmony/core/vm/gas.go (87.5%)
lgo_project/src/github.com/harmony-one/harmony/core/vm/gas_table.go (72.5%)
lgo_project/src/github.com/harmony-one/harmony/core/vm/gen_structlog.go (6.2%)
lgo_project/src/github.com/harmony-one/harmony/core/vm/instructions.go (98.4%)
lgo_project/src/github.com/harmony-one/harmony/core/vm/interpreter.go (85.9%)
Igo_project/src/github.com/harmony-one/harmony/core/vm/intpool.go (95.8%)
lgo_project/src/github.com/harmony-one/harmony/core/vm/logger.go (1.4%)
lgo_project/src/github.com/harmony-one/harmony/core/vm/memory.go (60.6%)
lgo_project/src/github.com/harmony-one/harmony/core/vm/memory_table.go (100.0%)
lgo_project/src/github.com/harmony-one/harmony/core/vm/opcodes.go (55.6%)

lgo_project/src/github.com/harmony-one/harmony/core/vm/runtime/env.go (66.7%)
lgo_project/src/github.com/harmony-one/harmony/core/vm/runtime/fuzz.go (100.0%)

lgo_project/src/github.com/harmony-one/harmony/core/vm/runtime/runtime.go (61.9%)
lgo_project/src/github.com/harmony-one/harmony/core/vm/stack.go (61.9%)
lgo_project/src/github.com/harmony-one/harmony/core/vm/stack_table.go (62.5%)

2019/09/24 11:27:12 workers: 4, corpus: 4084 (99hl4m ago), crashers: 2, restarts: 1/9956, execs: 138102682 (228/sec), cover: 2115, uptime:
2019/09/24 11:27: workers: 4, corpus: 404 (99hl4m ago), crashers: 2, restarts: 1/9956, execs: 138103049 (228/sec), cover: 2115, uptime:
2019/09/24 11:27: workers: 4, corpus: 404 (99hl4m ago), crashers: 2, restarts: 1/9956, execs: 138103263 (228/sec), cover: 2115, uptime:
2019/09/24 11:27:21 workers: 4, corpus: 4084 (99hl4m ago), crashers: 2, restarts: 1/9956, execs: 138103580 (228/sec), cover: 2115, uptime:
2019/09/24 11:27:24 workers: 4, corpus: 404 (99hl4m ago), crashers: 2, restarts: 1/9957, execs: 138103862 (228/sec), cover: 2115, uptime:
2019/09/24 11:27:27 workers: 4, corpus: 404 (99hl4m ago), crashers: 2, restarts: 1/9957, execs: 1381041608 (228/sec), cover: 2115, uptime:
2019/09/24 11:27:30 workers: 4, corpus: 404 (99hl4m ago), crashers: 2, restarts: 1/9957, execs: 138104423 (228/sec), cover: 2115, uptime:
2019/09/24 11:27:33 workers: 4, corpus: 4084 (99hl4m ago), crashers: 2, restarts: 1/9957, execs: 138104667 (228/sec), cover: 2115, uptime:
2019/09/24 11:27:36 workers: 4, corpus: 404 (99hl4m ago), crashers: 2, restarts: 1/9957, execs: 138104908 (228/sec), cover: 2115, uptime:
2019/09/24 11:27:39 workers: 4, corpus: 404 (99hl4m ago), crashers: 2, restarts: 1/9957, execs: 138105158 (228/sec), cover: 2115, uptime:
2019/09/24 11:27:42 workers: 4, corpus: 4084 (99hl4m ago), crashers: 2, restarts: 1/9957, execs: 138105386 (228/sec), cover: 2115, uptime:
2019/09/24 11:27:45 workers: 4, corpus: 404 (99h15m ago), crashers: 2, restarts: 1/9957, execs: 138105638 (228/sec), cover: 2115, uptime:
2019/09/24 11:27:48 workers: 4, corpus: 404 (99h15m ago), crashers: 2, restarts: 1/9957, execs: 138105903 (228/sec), cover: 2115, uptime:
2019/09/24 11:27:51 workers: 4, corpus: 4084 (99h15m ago), crashers: 2, restarts: 1/9957, execs: 138106293 (228/sec), cover: 2115, uptime:
2019/09/24 11:27:54 workers: 4, corpus: 484 (99h15m ago), crashers: 2, restarts: 1/9957, execs: 138106773 (228/sec), cover: 2115, uptime:
2019/09/24 11:27:57 workers: 4, corpus: 404 (99h15m ago), crashers: 2, restarts: 1/9957, execs: 138107182 (228/sec), cover: 2115, uptime:
2019/09/24 11:28:00 workers: 4, corpus: 404 (99h15m ago), crashers: 2, restarts: 1/9957, execs: 138107628 (228/sec), cover: 2115, uptime:
2019/09/24 11:28:03 workers: 4, corpus: 4084 (99h15m ago), crashers: 2, restarts: 1/9957, execs: 138108139 (228/sec), cover: 2115, uptime:
2019/09/24 11:28:06 workers: 4, corpus: 404 (99h15m ago), crashers: 2, restarts: 1/9957, execs: 138108457 (228/sec), cover: 2115, uptime:
2019/09/24 11:28:09 workers: 4, corpus: 404 (99h15m ago), crashers: 2, restarts: 1/9957, execs: 138108998 (228/sec), cover: 2115, uptime:
2019/09/24 11:28:12 workers: 4, corpus: 484 (99h15m ago), crashers: 2, restarts: 1/9957, execs: 138109500 (228/sec), cover: 2115, uptime:
2019/09/24 11:28:15 workers: 4, corpus: 4084 (99h15m ago), crashers: 2, restarts: 1/9957, execs: 138109992 (228/sec), cover: 2115, uptime:
2019/09/24 11:28:18 workers: 4, corpus: 404 (99h15m ago), crashers: 2, restarts: 1/9957, execs: 138110665 (228/sec), cover: 2115, uptime:
2019/09/24 11:28:21 workers: 4, corpus: 404 (99h15m ago), crashers: 2, restarts: 1/9957, execs: 138111283 (228/sec), cover: 2115, uptime:
2019/09/24 11:28:24 workers: 4, corpus: 4084 (99h15m ago), crashers: 2, restarts: 1/9957, execs: 138111991 (228/sec), cover: 2115, uptime:
2019/09/24 11:28:27 workers: 4, corpus: 404 (99h15m ago), crashers: 2, restarts: 1/9957, execs: 138112599 (228/sec), cover: 2115, uptime:
2019/09/24 11:28:30 workers: 4, corpus: 404 (99h15m ago), crashers: 2, restarts: 1/9956, execs: 138113254 (228/sec), cover: 2115, uptime:
2019/09/24 11:28:33 workers: 4, corpus: 404 (99h15m ago), crashers: 2, restarts: 1/9957, execs: 138114256 (228/sec), cover: 2115, uptime:
2019/09/24 11:28:36 workers: 4, corpus: 4084 (99h15m ago), crashers: 2, restarts: 1/9957, execs: 138115166 (228/sec), cover: 2115, uptime:
2019/09/24 11:28:39 workers: 4, corpus: 404 (99h15m ago), crashers: 2, restarts: 1/9957, execs: 138116265 (228/sec), cover: 2115, uptime:
2019/09/24 11:28:42 workers: 4, corpus: 404 (99h15m ago), crashers: 2, restarts: 1/9957, execs: 138117273 (228/sec), cover: 2115, uptime:
2019/09/24 11:28:45 workers: 4, corpus: 4084 (99h1ém ago), crashers: 2, restarts: 1/9957, execs: 138118339 (228/sec), cover: 2115, uptime:
2019/09/24 11:28:48 workers: 4, corpus: 404 (99hlém ago), crashers: 2, restarts: 1/9957, execs: 138119197 (228/sec), cover: 2115, uptime:
2019/09/24 11:28: workers: 4, corpus: 404 (99hl1ém ago), crashers: 2, restarts: 1/9956, execs: 138119852 (228/sec), cover: 2115, uptime:
2019/09/24 11:28:54 workers: 4, corpus: 4084 (99h1ém ago), crashers: 2, restarts: 1/9956, execs: 138128372 (228/sec), cover: 2115, uptime:
2019/09/24 11:28:57 workers: 4, corpus: 404 (99hl1ém ago), crashers: 2, restarts: 1/9956, execs: 138120871 (228/sec), cover: 2115, uptime:
2019/09/24 11:29:00 workers: 4, corpus: 404 (99hlém ago), crashers: 2, restarts: 1/9956, execs: 138121201 (228/sec), cover: 2115, uptime:

Figure 2.3: Go-fuzz Coverage

Figure 2.4: Go-fuzz Screenshot

167h53m
167h53m
167h53m
167h53m
167h53m
167h53m
167h53m
167h53m
167h53m
167h53m
167h53m
167h53m
167h53m
167h53m
167h53m
167h53m
167h53m
167h54m
167h54m
167h54m
167h54m
167h54m
167h54m
167h54m
167h54m
167h54m
167h54m
167h54m
167h54m
167h54m
167h54m
167h54m
167h54m
167h54m
167h54m
167h54m
167h54m

16/62

PeckShield Audit Report #: 2019-22

134
135
136
137

138
139
140

141
142
143

332
333
334
335
336
337

Public

3 Detailed Results

3.1 Missing Sanity Check When Adding Cross Shard Receipts

ID: PVE-001
Severity: Medium
Likelihood: High

Impact: Low

Description

e Target: node/node.go
e Category: Coding Practices [14]
e CWE subcategory: CWE-20 [15]

There is a vulnerability in the P2P module, which could be exploited by attackers to slow down the

processing of cross shard transfers.

func (node xNode) ProcessReceiptMessage(msgPayload []byte) {

cxp := types.CXReceiptsProof{}

if err := rlp.DecodeBytes(msgPayload, &cxp);

err 1= nil {

utils.Logger().Error().Err(err).Msg("[ProcessReceiptMessage] Unable to Decode

message Payload")
return

}

utils.Logger().Debug().Interface("cxp", cxp).Msg("[ProcessReceiptMessage] Add

CXReceiptsProof to pending Receipts")

// TODO: integrate with txpool
node. AddPendingReceipts(&cxp)

Listing 3.1: node/node cross shard.go

ProcessReceiptMessage will be called for receipts messages. It will decode the cross shard receipts

and merkle proof encoded in RLP format, and pass them to AddPendingReceipts (line 142).

func (node xNode) AddPendingReceipts(receipts xtypes.CXReceiptsProof) {

node . pendingCXMutex . Lock ()
defer node.pendingCXMutex. Unlock ()

if receipts.ContainsEmptyField () {
utils.Logger().Info().Int (...

)

17/62

PeckShield Audit Report #: 2019-22

338
339
340
341
342
343
344
345
346
347
348
349
350
351

183
184
185

186

Public

return
¥
blockNum := receipts.Header.Number().Uint64 ()
shardID := receipts.Header.ShardID ()
key := utils.GetPendingCXKey(shardID, blockNum)
if , ok := node.pendingCXReceipts[key]; ok {
utils.Logger().Info().Int (... ...)
return
}
node.pendingCXReceipts[key] = receipts
utils.Logger().Info().Int (... ...)

}
Listing 3.2: node/node.go

// ContainsEmptyField checks whether the given CXReceiptsProof contains empty field
func (cxp *CXReceiptsProof) ContainsEmptyField () bool {
return cxp == nil || cxp.Receipts = nil || cxp.MerkleProof = nil || cxp.Header =
nil || len(cxp.CommitSig)+len(cxp.CommitBitmap) = 0

Listing 3.3: core/types/cx_ receipt.go

AddPendingReceipts will first check whether the receipt contains empty fields (line 336) or had
been recorded in the pendingCXReceipts map (line 345), and will save it if not (line 349).

However, there is no further sanity check enforced while adding new receipts into pendingCXRe-
ceipts. Specifically, a malicious attacker can craft a valid yet meaningless CXReceiptsProof and send
it to the victims to occupy the pendingCXReceipts map with the key composed from shardID and
blockNum, which will block the real CXReceiptsProof from normal nodes and slow down the cross

shard transfer processing.

Recommendation Add sanity checks for the origin and validity of the cross shard receipts.

3.2 Missing Penalty When Leaders Not Processing Cross Shard

Receipts
e |ID: PVE-002 e Target: node/worker/worker.go
e Severity: Informational e Category: Behavioral Problems [16]
e Likelihood: High e CWE subcategory: CWE-841 [17]
e Impact: None/Undetermined

18/62 PeckShield Audit Report #: 2019-22

Public

Description

The cross shard transfer is supported on harmony blockchain. The process can be summarized as

follows:

1) Source shards run the cross shard transactions, and broadcast cross shard receipts to destination

shards.
2) Destination shards receive the receipts and put them in a pending map.
3) Destination shards leaders handle the cross shard receipts in the new blocks.

79 func (node xNode) proposeNewBlock() (*types.Block, error) {
80 node . Worker. UpdateCurrent ()

81
Listing 3.4: node/node newblock.go
124 if err := node.Worker.CommitTransactions (
125 pending, pendingStakingTransactions, beneficiary ,
126 func(payload staking.RPCTransactionError) {
127 const maxSize = 1024
128 node. errorSink.Lock()
129 if | ;= len(node.errorSink.failedTxns); | >= maxSize {
130 node.errorSink.failedTxns = append(node.errorSink.failedTxns[1:], payload)
131 } else {
132 node.errorSink.failedTxns = append(node.errorSink.failedTxns, payload)
133 }
134 node. errorSink . Unlock ()
135 1,
136): err I= nil {
137 utils.Logger().Error().Err(err).Msg("cannot commit transactions")
138 return nil , err
139 }
140
141 // Prepare cross shard transaction receipts
142 receiptsList := node.proposeReceiptsProof ()
143 if len(receiptsList) != 0 {
144 if err := node.Worker. CommitReceipts(receiptsList); err != nil {
145 utils.Logger().Error().Err(err).Msg("[proposeNewBlock] cannot commit receipts")
146 }
147 }

Listing 3.5: node/node newblock.go

proposeNewBlock is called by shard leaders for proposing a new block. It will process the pending
transactions / staking transactions (line 124 - 139), and handle the cross shard transaction receipts
(line 142 - 147).

19/62 PeckShield Audit Report #: 2019-22

206
207
208
209
210
211
212
213
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228

Public

func (w xWorker) CommitReceipts(receiptsList []*types.CXReceiptsProof) error {

if w.current.gasPool = nil {
w.current.gasPool = new(core.GasPool).AddGas(w. current.header. GasLimit())
}
if len(receiptsList) = 0 {
w.current . header.SetlncomingReceiptHash(types.EmptyRootHash)
} else {

w.current.header.SetlncomingReceiptHash (types.DeriveSha(types. CXReceiptsProofs(
receiptsList)))

for |, cx := range receiptslList {
err := core.ApplylncomingReceipt(w.config, w.current.state, w.current.header, cx)
if err 1= nil {
return ctxerror.New("cannot apply receiptsList").WithCause(err)
for |, cx := range receiptslList {
w.current.incxs = append(w.current.incxs, cx)
return nil

}
Listing 3.6: node/worker/worker.go

CommitReceipts will apply the receipts and adjust the balance of the corresponding account (line
218). However, there is no penalty if shard leader intentionally ignore any specific receipts and
let them stay pending forever. Specifically, a leader is free to choose any receipts in the node.
pendingCXReceipts map, not by timestamp or any other specific rule, and there is no penalty if a
malicious leader intentionally ignore some receipts. Ttechnically, a leader can skip some cross shard

receipts on purpose and let them stay pending forever.

Recommendation Add penalty when leaders do not process cross shard receipts. According
to Harmony, leader rotation and the mechanisms to detect transaction withholding and preempt a
malicious leader will be added in the next phase of mainnet upgrade. In the current phase where

Harmony controls the leader nodes, this is not an issue to the users.

3.3 Out-of-Bounds Access in the P2P Module - #1

e |ID: PVE-003 e Target: node/node_handler.go

e Severity: Critical e Category: Coding Practices [14]
e Likelihood: High e CWE subcategory: CWE-129 [18]
e Impact: High

20/62 PeckShield Audit Report #: 2019-22

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

Public

Description

This is a vulnerability in the P2P module, which could be exploited by attackers to perform DoS
attack against the harmony network.

Within the harmony network, a node can be one of the these roles: validator, leader, beacon
validator, or beacon leader depending on its context. With each role, a node would run a certain set
of services.

Furthermore, harmony network has enabled libp2p based gossiping using pubsub. Nodes no longer
send messages to individual nodes, instead, they publish / subscribe to different topics.

// receiveGroupMessage use libp2p pubsub mechanism to receive broadcast messages
func (node xNode) receiveGroupMessage (
receiver p2p.GroupReceiver, rxQueue msgq.MessageAdder,
) {
ctx := context.Background()
// TODO ek - infinite loop; add shutdown/cleanup logic
for {
msg, sender, err := receiver.Receive(ctx)
if err I= nil {
utils.Logger().Warn().Err(err).
Msg("cannot receive from group")
continue
}
if sender = node. host.GetID() {
continue
¥
//utils.Logger () .Info ("[PUBSUB]", "received group msg", len(msg), "sender",
sender)
// skip the first 5 bytes, 1 byte is p2p type, 4 bytes are message size
if err := rxQueue.AddMessage(msg[5:], sender); err I= nil {
utils.Logger().Warn().Err(err).
Str("sender", sender.Pretty()).

Msg(“cannot enqueue incoming message for processing")

Listing 3.7: node/node_handler.go

Specifically, each node will call receiveGroupMessage to receive broadcast messages, and distribute
them to consumers. However, there is no sanity check for the length of the received messages. It
simply passes the buffer start from offset 5 (line 57) to queues, which could cause out-of-bound
access panic for nodes subscribe to the topic if the message length < 5.

Recommendation Add sanity checks for the length of the received messages.

3.4 Out-of-Bounds Access in the P2P Module - #2

21/62 PeckShield Audit Report #: 2019-22

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

Public

e |ID: PVE-004 e Target: node/node_handler.go
e Severity: Critical e Category: Coding Practices [14]
o Likelihood: High e CWE subcategory: CWE-129 [18]
e Impact: High

Description

This is a vulnerability in the P2P module, which could be exploited by attackers to perform DoS
attack against the harmony network.

Within the harmony network, a node can be treated as one of the roles: validator, leader, beacon
validator, or beacon leader depending on its context. With each role, a node can run a certain set
of services.

Also, harmony has enabled libp2p based gossiping using pubsub. Nodes no longer send messages
to individual nodes, instead, they publish / subscribe to different topics.

// receiveGroupMessage use libp2p pubsub mechanism to receive broadcast messages
func (node x*Node) receiveGroupMessage (
receiver p2p.GroupReceiver, rxQueue msgq.MessageAdder,

) {
ctx := context.Background()
// TODO ek - infinite loop; add shutdown/cleanup logic
for {
msg, sender, err := receiver.Receive(ctx)
if err I= nil {
utils.Logger() .Warn().Err(err).
Msg("cannot receive from group")
continue
}
if sender = node.host.GetID() {
continue
¥
//utils.Logger () .Info ("[PUBSUB]", "received group msg", len(msg), "sender",
sender)
// skip the first 5 bytes, 1 byte is p2p type, 4 bytes are message size
if err := rxQueue.AddMessage(msg[5:], sender); err I= nil {
utils.Logger().Warn().Err(err).
Str("sender", sender.Pretty()).
Msg("cannot enqueue incoming message for processing")
}
¥
}

Listing 3.8: node/node handler.go

Each node would call receiveGroupMessage to receive broadcast messages, and distribute them to

consumers. Messages are encoded as the following format:

22/62 PeckShield Audit Report #: 2019-22

=
H O W oo ~NOOLA~ WN =

[y
N

66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

Public

———— content start ————
1 byte — message category
0x00: Consensus
0x01: Node...
1 byte — message type
— for Consensus category
0x00: consensus
0x01: sharding
— for Node category
0x00: transaction
n — 2 bytes — actual message payload
— content end ————
Every message has its category and type, and would be handled accordingly.
func (node x*Node) HandleMessage(content []byte, sender libp2p peer.ID) {
msgCategory , err := proto.GetMessageCategory(content)
if err 1= nil {
utils.Logger().Error().
Err(err).
Msg("HandleMessage get message category failed")
return
¥
msgType, err := proto.GetMessageType(content)
if err 1= nil {
utils.Logger().Error().
Err(err).
Msg("HandleMessage get message type failed")
return
}
msgPayload, err := proto.GetMessagePayload(content)
if err 1= nil {
utils.Logger().Error().
Err(err).
Msg("HandleMessage get message payload failed")
return
}
switch msgCategory {
case proto.Consensus:
msgPayload, := proto.GetConsensusMessagePayload(content)
if node.NodeConfig.Role() = nodeconfig.ExplorerNode {
node. ExplorerMessageHandler (msgPayload)
} else {
node. ConsensusMessageHandler (msgPayload)
¥
case proto.DRand:
msgPayload, := proto.GetDRandMessagePayload(content)
if node.DRand != nil {
if node.DRand.lIsLeader {
node.DRand. ProcessMessageleader (msgPayload)

23/62

PeckShield Audit Report #: 2019-22

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

Public

} else {
node.DRand. ProcessMessageValidator (msgPayload)
¥
}

case proto.Node:

actionType := proto_node.MessageType(msgType)

switch actionType {

case proto node. Transaction:
utils.Logger().Debug().Msg("NET: received message: Node/Transaction")
node.transactionMessageHandler (msgPayload)

case proto node.Staking:
utils.Logger().Debug().Msg("NET: received message: Node/Staking")
node.stakingMessageHandler (msgPayload)

case proto node.Block:
utils.Logger().Debug().Msg("NET: received message: Node/Block")
blockMsgType := proto node.BlockMessageType(msgPayload [0])

Listing 3.9: node/node handler.go

msgCategory, msgType, msgPayload are extracted from the message (msg[0], msg[1], msg[2:]), and
HandleMessage will take different actions according to them. However, there is no sanity check for
msgPayload for proto node.Block case (line 117).

Specifically, if a malicious attacker passed in a small buffer (length = 7) with msgCategory =
proto.Node and msgType = proto node.Block, msgPayload (line 83) will be a 0 length slice, and

accessing to it (line 119) would cause out-of-bound access panic for nodes subscribe to the topic.

Recommendation Add sanity checks for the length of the received messages.

3.5 Out-of-Bounds Access in the P2P Module - #3

e |ID: PVE-005 e Target: node/node_handler.go

e Severity: Critical e Category: Coding Practices [14]
o Likelihood: High e CWE subcategory: CWE-129 [18]
e Impact: High

Description

This is a vulnerability in the P2P module, which could be exploited by attackers to perform DoS
attack against the harmony network.

Within the harmony network, a node can be treated as one of the roles: validator, leader, beacon
validator, or beacon leader depending on its context. With each role, a node can run a certain set

of services.

24/62 PeckShield Audit Report #: 2019-22

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

© 0 ~NO O A~ WN

=
N = O

66
67
68

Public

The harmony network has also enabled libp2p based gossiping using pubsub. Nodes no longer

send messages to individual nodes, instead, they publish / subscribe to different topics.

// rec
func (

re

) 1

eiveGroupMessage use 1libp2p pubsub mechanism to receive broadcast messages
node *Node) receiveGroupMessage (
ceiver p2p.GroupReceiver, rxQueue msgq.MessageAdder,

ctx := context.Background()

//
fo

TODO ek - infinite loop; add shutdown/cleanup logic
r {
msg, sender, err := receiver.Receive(ctx)
if err I= nil {
utils.Logger() .Warn().Err(err).
Msg("cannot receive from group")
continue
¥
if sender = node.host.GetID() {
continue
¥
//utils.Logger () .Info ("[PUBSUB]", "received group msg", len(msg), "sender",
sender)
// skip the first 5 bytes, 1 byte is p2p type, 4 bytes are message size
if err := rxQueue.AddMessage(msg[5:], sender); err I= nil {
utils.Logger().Warn().Err(err).
Str("sender", sender.Pretty()).

Msg(“cannot enqueue incoming message for processing“)

Listing 3.10: node/node handler.go

Each node would call receiveGroupMessage to receive broadcast messages, and distribute them to

consumers. Messages are encoded as the following format:

1 byte

1 byte

n - 2

content start ————
— message category
0x00: Consensus
0x01: Node...
— message type
— for Consensus category
0x00: consensus
0x01: sharding
— for Node category
0x00: transaction
bytes — actual message payload
content end ————

Every message has its category and type, and would be handled accordingly.

func (node x*Node) HandleMessage(content []byte, sender libp2p peer.ID) {
msgCategory, err := proto.GetMessageCategory(content)
if err 1= nil {

25,62

PeckShield Audit Report #: 2019-22

69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

Public

utils.Logger().Error().

Err(err).

Msg("HandleMessage get message category failed")
return

msgType, err := proto.GetMessageType(content)
if err 1= nil {
utils.Logger().Error().
Err(err).
Msg("HandleMessage get message type failed")
return

msgPayload, err := proto.GetMessagePayload(content)
if err 1= nil {
utils.Logger().Error().
Err(err).
Msg("HandleMessage get message payload failed")
return

switch msgCategory {
case proto.Consensus:
msgPayload, := proto.GetConsensusMessagePayload(content)
if node.NodeConfig.Role() = nodeconfig.ExplorerNode {
node. ExplorerMessageHandler (msgPayload)
} else {

node. ConsensusMessageHandler (msgPayload)

¥

case proto.DRand:
msgPayload, := proto.GetDRandMessagePayload(content)
if node.DRand != nil {

if node.DRand.lIsLeader {
node.DRand. ProcessMessageleader (msgPayload)

} else {
node.DRand. ProcessMessageValidator (msgPayload)

}

case proto.Node:

actionType := proto_ node.MessageType(msgType)

switch actionType {

case proto node. Transaction:
utils.Logger().Debug().Msg("NET: received message: Node/Transaction")
node.transactionMessageHandler (msgPayload)

case proto node.Staking:
utils.Logger().Debug().Msg("NET: received message: Node/Staking")
node.stakingMessageHandler (msgPayload)

case proto node.Block:
utils.Logger().Debug().Msg("NET: received message: Node/Block")
blockMsgType := proto node.BlockMessageType(msgPayload [0])

Listing 3.11: node/node handler.go

26/62 PeckShield Audit Report #: 2019-22

173
174
175
176
177
178
179

180
181
182
183
184
185
186
187
188

Public

msgCategory, msgType, msgPayload are extracted from the message (msg[O], msg[l], msg[2:]), and
HandleMessage would take different actions according to them.

func (node xNode) transactionMessageHandler(msgPayload []byte) {
txMessageType := proto node. TransactionMessageType(msgPayload [0])

switch txMessageType {
case proto node.Send:

txs := types.Transactions{}
err := rlp.Decode(bytes.NewReader(msgPayload[1:]), &txs) // skip the Send messge
type

if err 1= nil {
utils.Logger().Error().
Err(err).
Msg(“Failed to deserialize transaction 1ist")

return

¥

node.addPendingTransactions(txs)

}
Listing 3.12: node/node handler.go

transactionMessageHandler would be called for transaction messages. However, there is no sanity
check for msgPayload (line 174).

To be exact, if a malicious attacker passed in a small buffer (length = 7) with msgCategory
= proto.Node and msgType = proto node.Transaction, msgPayload will be a 0 length slice, and

accessing to it (line 174) could cause OOB access panic for nodes subscribe to the topic.

Recommendation Add sanity checks for the length of the received messages.

3.6 DoS Vulnerability in the P2P Module - #1

e |ID: PVE-006 e Target: node/node.go

e Severity: Critical e Category: Behavioral Problems [16]
e Likelihood: High e CWE subcategory: CWE-696 [19]
e Impact: High

Description

This is a vulnerability in the P2P module, which could be exploited by attackers to perform DoS
attack against the harmony network.

Within the harmony network, a node can be one of the these roles: validator, leader, beacon
validator, or beacon leader depending on its context. With each role, a node would run a certain set

of services.

27/62 PeckShield Audit Report #: 2019-22

66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

Public

Furthermore, harmony network has enabled libp2p based gossiping using pubsub. Nodes no longer
send messages to individual nodes, instead, they publish / subscribe to different topics.

func (node *Node) HandleMessage(content []byte, sender libp2p peer.ID) {

msgCategory , err := proto.GetMessageCategory(content)
if err 1= nil {
utils.Logger().Error().
Err(err).
Msg("HandleMessage get message category failed")
return
3
msgType, err := proto.GetMessageType(content)

if err 1= nil {
utils.Logger().Error().
Err(err).
Msg("HandleMessage get message type failed")

return

msgPayload, err := proto.GetMessagePayload(content)
if err 1= nil {
utils.Logger().Error().
Err(err).
Msg("HandleMessage get message payload failed")
return

switch msgCategory {
case proto.Consensus:
msgPayload, := proto.GetConsensusMessagePayload(content)
if node.NodeConfig.Role() = nodeconfig.ExplorerNode {
node. ExplorerMessageHandler (msgPayload)
} else {

node. ConsensusMessageHandler (msgPayload)

¥

case proto.DRand:
msgPayload, := proto.GetDRandMessagePayload(content)
if node.DRand != nil {

if node.DRand.IsLeader {
node.DRand. ProcessMessageleader (msgPayload)

} else {

node.DRand. ProcessMessageValidator (msgPayload)

¥

case proto.Node:
actionType := proto_node.MessageType(msgType)
switch actionType {
case proto node. Transaction:
utils.Logger().Debug().Msg("NET: received message: Node/Transaction")
node.transactionMessageHandler (msgPayload)
case proto node.Staking:

28/62 PeckShield Audit Report #: 2019-22

115
116
117
118
119

190
191
192
193
194
195
196
197
198
199
200

295

296
297
298
299
300
301
302
303
304
305
306
307
308

Public

utils.Logger().Debug().Msg("NET: received message: Node/Staking")
node.stakingMessageHandler (msgPayload)

case proto node.Block:
utils.Logger().Debug().Msg("NET: received message: Node/Block")
blockMsgType := proto node.BlockMessageType(msgPayload [0])

Listing 3.13: node/node handler.go

msgCategory, msgType, msgPayload are extracted from the message (msg[O], msg[l], msg[2:]), and
HandleMessage Will take different actions according to them.

func (node xNode) stakingMessageHandler (msgPayload []byte) {
txs := staking.StakingTransactions{}
err := rlp.Decode(bytes.NewReader(msgPayload [:]) , &txs)
if err 1= nil {
utils.Logger().Error().
Err(err).
Msg("Failed to deserialize staking transaction list")
return

}

node.addPendingStakingTransactions (txs)

Listing 3.14: node/node handler.go

stakingMessageHandler will be called for staking transaction messages. It will decode the staking
transactions encoded in RLP format, and pass them to addPendingStakingTransactions (Iine 199).

func (node xNode) addPendingStakingTransactions(newStakingTxs staking.
StakingTransactions) {

txPoolLimit := core.ShardingSchedule. MaxTxPoolSizeLimit ()
node. pendingStakingTxMutex . Lock ()
for , tx := range newStakingTxs {
if , ok := node.pendingStakingTransactions[tx.Hash()]; !ok {
node. pendingStakingTransactions[tx.Hash()] = tx
¥
if len(node.pendingStakingTransactions) > txPoolLimit {
break
}
}

node. pendingStakingTxMutex. Unlock ()

Listing 3.15: node/node.go

addPendingStakingTransactions Will check whether the staking transaction had been recorded in
the pendingStakingTransactions map (line 299), and will stop storing new transactions if the map
size > txPoolLimit (8,000 in mainnet).

However, the length check is misplaced, it should be executed before storing the staking trans-

action into pendingStakingTransactions.

29/62 PeckShield Audit Report #: 2019-22

66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86

Public

Specifically, a malicious attacker can flood the victims with many different staking transactions
and gradually increase the memory usage of the pendingStakingTransactions map, which eventually

could lead to resource exhausting and hang or crash the remote nodes in the end.

Recommendation Put the length check in the right place.

3.7 DoS Vulnerability in the P2P Module - #2

e ID: PVE-007 e Target: node/node.go
e Severity: Critical e Category: Coding Practices [14]
e Likelihood: High e CWE subcategory: CWE-20 [15]
e Impact: High

Description

This is a vulnerability in the P2P module, which could be exploited by attackers to perform DoS
attack against the harmony network.

Within the harmony network, a node can be one of the these roles: validator, leader, beacon
validator, or beacon leader depending on its context. With each role, a node would run a certain set
of services.

Furthermore, harmony network has enabled libp2p based gossiping using pubsub. Nodes no longer
send messages to individual nodes, instead, they publish / subscribe to different topics.

func (node *Node) HandleMessage(content []byte, sender libp2p peer.ID) {
msgCategory, err := proto.GetMessageCategory(content)
if err 1= nil {
utils.Logger().Error().
Err(err).
Msg("HandleMessage get message category failed")
return

by

msgType, err := proto.GetMessageType(content)
if err 1= nil {
utils.Logger().Error().
Err(err).
Msg("HandleMessage get message type failed")
return

}

msgPayload, err := proto.GetMessagePayload(content)
if err 1= nil {
utils.Logger().Error().
Err(err).

30/62 PeckShield Audit Report #: 2019-22

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

137

Public

Msg("HandleMessage get message payload failed")
return

switch msgCategory {
case proto.Consensus:
msgPayload, := proto.GetConsensusMessagePayload(content)
if node.NodeConfig.Role() = nodeconfig.ExplorerNode {
node. ExplorerMessageHandler (msgPayload)
} else {

node. ConsensusMessageHandler (msgPayload)

}

case proto.DRand:
msgPayload, := proto.GetDRandMessagePayload(content)
if node.DRand != nil {

if node.DRand.lIsLeader {
node.DRand. ProcessMessageleader (msgPayload)

1 else {

node.DRand. ProcessMessageValidator (msgPayload)

¥

case proto.Node:
actionType := proto_node.MessageType(msgType)
switch actionType {
case proto node. Transaction:
utils.Logger().Debug().Msg("NET: received message: Node/Transaction")
node.transactionMessageHandler (msgPayload)
case proto node.Staking:
utils.Logger().Debug().Msg("NET: received message: Node/Staking")
node.stakingMessageHandler (msgPayload)
case proto node.Block:
utils.Logger().Debug().Msg("NET: received message: Node/Block")
blockMsgType := proto node.BlockMessageType(msgPayload [0])
switch blockMsgType {
case proto node.Sync:
utils.Logger().Debug().Msg("NET: received message: Node/Sync")
var blocks []*types.Block
err := rlp.DecodeBytes(msgPayload[1:], &blocks)
if err I= nil {
utils.Logger().Error().
Err(err).
Msg("block sync")
} else {
// for non-beaconchain node, subscribe to beacon block broadcast
if node.Blockchain().ShardID() != 0 {
for , block := range blocks {
if block.ShardID() = 0 {
utils.Logger().Info().
Uint64 ("block", blocks [0].NumberU64()).
Msgf("Block being handled by block channel %d %d",
block . NumberU64 (), block.ShardID())
node. BeaconBlockChannel <- block

31/62 PeckShield Audit Report #: 2019-22

138
139
140
141

142
143
144
145
146
147
148
149

150
151
152
153

154
155
156
157

158
159

406
407
408
409

410
411
412

413
414
415

329
330
331

Public

}
}
ks
if node.Client != nil && node. Client.UpdateBlocks != nil && blocks
I= nil {
utils.Logger().Info().Msg("Block being handled by client")
node. Client . UpdateBlocks(blocks)
ks

case proto node.Header:

// only beacon chain will accept the header from other shards

utils.Logger().Debug().Uint32("shardID", node.NodeConfig.ShardID).Msg("
NET: received message: Node/Header")

if node.NodeConfig.ShardID != 0 {
return

¥

node. ProcessHeaderMessage (msgPayload [1:]) // skip first byte which is
blockMsgType

case proto node.Receipt:
utils.Logger().Debug().Msg("NET: received message: Node/Receipt")
node.ProcessReceiptMessage (msgPayload[1:]) // skip first byte which is
blockMsgType

Listing 3.16: node/node handler.go

msgCategory, msgType, msgPayload are extracted from the message (msg[0], msg[1], msg[2:]), and
HandleMessage will take different actions according to them.

func (node x*Node) ProcessReceiptMessage(msgPayload []byte) {

cxp = types.CXReceiptsProof{}

if err := rlp.DecodeBytes(msgPayload, &cxp); err = nil {
utils.Logger().Error().Err(err).Msg("[ProcessReceiptMessage] Unable to Decode

message Payload")

return

¥

utils.Logger().Debug().Interface("cxp", cxp).Msg("[ProcessReceiptMessage] Add
CXReceiptsProof to pending Receipts")

// TODO: integrate with txpool

node. AddPendingReceipts(&cxp)

Listing 3.17: node/node_cross_shard.go

ProcessReceiptMessage would be called for receipts messages. It would decode the cross shard
receipts and merkle proof encoded in RLP format, and pass them to AddPendingReceipts (line 414).

func (node xNode) AddPendingReceipts(receipts xtypes.CXReceiptsProof) {
node . pendingCXMutex . Lock ()
defer node.pendingCXMutex. Unlock ()

32/62 PeckShield Audit Report #: 2019-22

332
333
334

335
336
337
338
339
340
341
342
343

344
345
346
347

348

Public

if receipts.ContainsEmptyField () {

utils.Logger().Info().Int("totalPendingReceipts", len(node.pendingCXReceipts)).
Msg("CXReceiptsProof contains empty field")
return
¥
blockNum := receipts.Header.Number().Uint64 ()
shardID := receipts.Header.ShardID ()
key := utils.GetPendingCXKey(shardID , blockNum)
if , ok := node.pendingCXReceipts[key]; ok {
utils.Logger().Info().Int("totalPendingReceipts", len(node.pendingCXReceipts)).
Msg("Already Got Same Receipt message")
return
¥
node.pendingCXReceipts[key] = receipts
utils.Logger().Info().Int("totalPendingReceipts", len(node.pendingCXReceipts)).Msg("

Got ONE more receipt message")

}
Listing 3.18: node/node.go

AddPendingReceipts would check whether the receipt had been recorded in the pendingCXReceipts
map (line 342), and would save it if not (line 346).

However, there is no limitation enforced while adding new receipts into pendingCXReceipts.

Therefore, a malicious attacker can flood the victims with many crafted receipts and gradually
increase the memory usage of the pendingCXReceipts map, which eventually could lead to resource

exhausting and hang or crash the remote nodes in the end.

Recommendation Add length limitation on the cross shard receipts.

3.8 Integer Overflow in the RPC Module

ID: PVE-008 e Target: internal/hmyapi/transactionpool.

go
e Category: Coding Practices [14]
e CWE subcategory: CWE-190 [20]

Severity: Medium

Likelihood: High

Impact: Low

Description

This is a vulnerability in the RPC api GetTransactionsHistory, which could be exploited by attackers
to perform DoS attack against RPC thread.

33/62 PeckShield Audit Report #: 2019-22

45

46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

24
25
26
27
28
29
30
31
32

19
20
21
22
23
24
25
26
27
28
29

Public

// GetTransactionsHistory returns the list of transactions hashes that involve a
particular address.
func (s xPublicTransactionPoolAPI) GetTransactionsHistory (ctx context.Context, args
TxHistoryArgs) (map[string]interface{}, error) {
address := args.Address
result := []common.Hash{}
var err error
if strings.HasPrefix(args.Address, "onel") {
address = args.Address

} else {
addr := internal _common.ParseAddr(args.Address)
address , err = internal _common.AddressToBech32(addr)
if err 1= nil {
return nil, err
}
¥
hashes, err := s.b.GetTransactionsHistory (address, args.TxType, args.Order)
if err 1= nil {
return nil , err
¥

result = ReturnWithPagination(hashes, args)

Listing 3.19: internal /hmyapi/transactionpool.go

When analyzing the above code snippet, we noticed that harmony network allows a user to
request transactions hashes history (line 59) by passing parameters of TxHistoryArgs struct:

// TxHistoryArgs is struct to make GetTransactionsHistory request

type TxHistoryArgs struct {

Address string ‘json:"address"‘
Pagelndex int ‘json:"pagelIndex"®
PageSize int ‘json:"pageSize" ¢
Full Tx bool ‘json:"fullTx"*¢
TxType string ‘json:"txType"*
Order string ‘json:"order"‘¢

Listing 3.20: internal/hmyapi/transactionpool.go

The ReturnWithPagination routine use two parameters Pagelndex/pageSize to return transactions
history with pagination:

// ReturnWithPagination returns result with tran (offset, page in TxHistoryArgs).
func ReturnWithPagination(hashes []common.Hash, args TxHistoryArgs) []common.Hash {
pageSize := defaultPageSize
pagelndex := args.Pagelndex
if args.PageSize > 0 {
pageSize = args.PageSize
¥
if pageSizexpagelndex >= len(hashes) {
return make ([] common.Hash, 0)

}

if pageSizexpagelndex+pageSize > len(hashes) {

34/62 PeckShield Audit Report #: 2019-22

30
31
32
33

17
18
19
20
21
22
23
24
25
26
27
28
29

Public

return hashes[pageSizexpagelndex:]

¥

return hashes|[pageSizexpagelndex : pageSizexpagelndex+pageSize]

Listing 3.21: internal /hmyapi/util.go

However, these parameters are directly passed from a user-controlled transaction and thus they
should be validated before usage. Although in current implementation, such validation is insufficient

and malicious parameters, i.e., pagelndex and pageSize, can cause an array OOB Panic (lines 32).

Recommendation Add sanity checks for these parameters.

3.9 Consensus Suspending in the Consensus Module - #1

e ID: PVE-009 e Target: consensus/checks.go

e Severity: Critical e Category: Behavioral Problems [16]
e Likelihood: High e CWE subcategory: CWE-841 [17]
e Impact: High

Description

This is a vulnerability in the consensus module, which could be exploited by attackers to compromise
the harmony network consensus. As an improvement on PBFT, Harmony's consensus protocol is
linearly scalable in terms of communication complexity, and thus it is called Fast Byzantine Fault
Tolerance (FBFT). Specifically, Harmony's FBFT consensus involves the following steps as shown in
Figure 3.1:

The first phase is announce, the leader broadcasts announce message (e.g. the proposal block)
to validators. When a validator receives announce message, it enters prepare phase.

func (consensus *Consensus) onAnnounce(msg *msg pb. Message) {
recvMsg , err := ParseFBFTMessage(msg)
if err 1= nil {
consensus . getLogger (). Error ().
Err(err).
Uint64 ("MsgBlockNum", recvMsg.BlockNum).
Msg(" [OnAnnounce] Unparseable leader message")

return

// NOTE let it handle its own logs
if lconsensus.onAnnounceSanityChecks(recvMsg) {
return

35/62 PeckShield Audit Report #: 2019-22

30

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

Public

Leader

BLS Multi-Sig BLS Multi-Sig New Block
Verify / Sign Aggregation Verify / Sign Aggregation Confirmed

Validator #1

X I I W [

Validator #2

Validator #3

Announce Prepare : Commit

Figure 1. Network communication during a single round of consensus.

Figure 3.1: FBFT Consensus

Listing 3.22: consensus/validator.go

onAnnounce is called when validators receives announce message from the leader. It performs lots

of sanity check to make sure the message is valid.

func (consensus *Consensus) onAnnounceSanityChecks(recvMsg *FBFTMessage) bool {

logMsgs := consensus.FBFTLog. GetMessagesByTypeSeqView (
msg_pb.MessageType ANNOUNCE, recvMsg.BlockNum, recvMsg.ViewlD,

)

if len(logMsgs) > 0 {

if logMsgs[0].BlockHash != recvMsg.BlockHash &&
logMsgs [0]. SenderPubkey . IsEqual (recvMsg. SenderPubkey) {
consensus . getLogger () .Debug() .
Str("logMsgSenderKey", logMsgs[0].SenderPubkey.SerializeToHexStr()).
Str("logMsgBlockHash", logMsgs[0]. BlockHash.Hex()).
Str("recvMsg.SenderPubkey", recvMsg.SenderPubkey.SerializeToHexStr()).
Uint64 ("recvMsg.BlockNum", recvMsg.BlockNum).
Uint64 ("recvMsg.ViewID", recvMsg.ViewlD).
Str("recvMsgBlockHash", recvMsg.BlockHash.Hex()).
Str("LeaderKey", consensus.leaderPubKey.SerializeToHexStr()).
Msg(" [OnAnnounce] Leader is malicious")

if consensus
viewlD :=
consensus

} else {

consensus

.current.Mode() == ViewChanging {
consensus.current.ViewlD ()
.startViewChange (viewlD + 1)

.startViewChange(consensus.viewlD + 1)

Listing 3.23: consensus/checks.go

When a validator detects the leader proposed two different announce messages in one view, it

36/62

PeckShield Audit Report #: 2019-22

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Public

would immediately start view change (line 107-112). However, the sanity check in onAnnounce can't

guarantee the message is from the current leader.

func (consensus *Consensus) validatorSanityChecks(msg *msg pb.Message) bool {

senderKey , err := consensus.verifySenderKey (msg)
if err I= nil {
if err = errValidNotInCommittee {

consensus . getLogger () .Info ().
Msg("sender key not in this slot’s subcommittee")

} else {

consensus . getLogger().Error().Err(err).Msg("VerifySenderKey failed")

}

return false

IsenderKey.IsEqual(consensus.LeaderPubKey) &&

consensus.current.Mode() == Normal && !consensus.ignoreViewlDCheck {

consensus . getLogger () .Warn() .Msg(" [OnPrepared] SenderKey not match leader PubKey")
return false

err := verifyMessageSig(senderKey, msg); err != nil {
consensus.getLogger().Error().Err(err).Msg(
"Failed to verify sender’s signature",

)

return false

return true

Listing 3.24: consensus/checks.go

Specifically, a malicious leader can intentionally propose two different announce messages in one

view to trigger validators’ view change and make them all transit to ViewChanging mode. Once

validators are in ViewChanging mode, the sanity checks (line 21-23) are ignored, thus the leader can

constantly trigger view change by sending different announce messages with the same block number

and view id, eventually compromise the whole harmony network.

Recommendation Add sanity checks for the legality of the announce messages.

3.10 Out-of-Memory in the Consensus Module - #1

ID: PVE-010 L] Target: consensus/checks.go
Severity: Critical e Category: Behavioral Problems [16]
Likelihood: High e CWE subcategory: CWE-115 [21]
Impact: High

37/62

PeckShield Audit Report #: 2019-22

Public

Description

Under harmony's PBFT consensus protocol, the first phase is announce, the leader would broadcast
announce message (e.g. the proposal block) to validators. When a validator receives announce

message, it enters prepare phase.

17 func (consensus *Consensus) onAnnounce(msg *msg pb. Message) {
18 recvMsg , err := ParseFBFTMessage(msg)

19 if err 1= nil {

20 consensus . getLogger (). Error().

21 Err(err).

22 Uint64 ("MsgBlockNum", recvMsg.BlockNum).

23 Msg(" [OnAnnounce] Unparseable leader message")
24 return

25 }

26

27 // NOTE let it handle its own logs

28 if lconsensus.onAnnounceSanityChecks(recvMsg) {
29 return

30 }

31

32 consensus . getLogger () .Debug() .

33 Uint64 ("MsgViewID", recvMsg.ViewlD).

34 Uint64 ("MsgBlockNum", recvMsg.BlockNum).

35 Msg(" [OnAnnounce] Announce message Added")

36 consensus .FBFTLog. AddMessage (recvMsg)

Listing 3.25: consensus/validator.go

onAnnounce is called when validators receives announce message from the leader. It performs lots
of sanity check to make sure the message is valid. It would store the message for future validation
(line 36).

91 func (consensus xConsensus) onAnnounceSanityChecks(recvMsg xFBFTMessage) bool {

92 logMsgs := consensus.FBFTLog. GetMessagesByTypeSeqView (

93 msg_pb.MessageType ANNOUNCE, recvMsg.BlockNum, recvMsg.ViewlD ,

94)

95 if len(logMsgs) > 0 {

96 if logMsgs[0].BlockHash != recvMsg.BlockHash &&

97 logMsgs [0]. SenderPubkey . IsEqual (recvMsg.SenderPubkey) {

98 consensus . getLogger () .Debug() .

99 Str("logMsgSenderKey", logMsgs[0].SenderPubkey.SerializeToHexStr()).
100 Str("logMsgBlockHash", logMsgs[0].BlockHash.Hex()).

101 Str("recvMsg.SenderPubkey", recvMsg.SenderPubkey.SerializeToHexStr()).
102 Uint64 ("recvMsg.BlockNum", recvMsg.BlockNum).

103 Uint64 ("recvMsg.ViewID", recvMsg.ViewlD).

104 Str("recvMsgBlockHash", recvMsg.BlockHash.Hex()).

105 Str("LeaderKey", consensus.leaderPubKey.SerializeToHexStr()).

106 Msg(" [OnAnnounce] Leader is malicious")

107 if consensus.current.Mode() = ViewChanging {

108 viewlD := consensus.current.ViewlD ()

109 consensus.startViewChange (viewlD + 1)

38/62 PeckShield Audit Report #: 2019-22

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Public

} else {

consensus.startViewChange (consensus.viewlD + 1)

}

consensus . getLogger () .Debug() .
Str("leaderKey", consensus.leaderPubKey.SerializeToHexStr()).

Msg(" [OnAnnounce] Announce message received again")

¥

return consensus.isRightBlockNumCheck (recvMsg)

func (consensus *Consensus) isRightBlockNumCheck(recvMsg *FBFTMessage) bool {
if recvMsg.BlockNum < consensus.blockNum {
consensus . getLogger () .Debug() .
Uint64 ("MsgBlockNum", recvMsg.BlockNum).
Msg("Wrong BlockNum Received, ignoring!")
return false

}

return true

Listing 3.26: consensus/checks.go

When a validator detects the leader proposed two different announce messages in one view, it
would immediately start view change (line 107-112). However, the sanity check in onAnnounce can't
guarantee the message is from the current leader.

func (consensus *Consensus) validatorSanityChecks(msg *msg pb.Message) bool {

senderKey , err := consensus.verifySenderKey (msg)
if err I= nil {
if err = errValidNotInCommittee {

consensus . getLogger () .Info ().
Msg("sender key not in this slot’s subcommittee")

} else {

consensus . getLogger().Error().Err(err).Msg("VerifySenderKey failed")

}

return false

if !senderKey.lsEqual(consensus.LlLeaderPubKey) &&
consensus.current.Mode() == Normal && !consensus.ignoreViewlDCheck {
consensus . getLogger () .Warn() .Msg(" [OnPrepared] SenderKey not match leader PubKey")
return false

}
if err := verifyMessageSig(senderKey, msg); err != nil {
consensus . getlLogger().Error().Err(err).Msg(
"Failed to verify sender’s signature",
)
return false
¥

39/62 PeckShield Audit Report #: 2019-22

Public

34 return true
35 }

Listing 3.27: consensus/checks.go

Therefore, a malicious leader could intentionally propose two different announce messages in one
view to trigger validators' view change (line 107-112) and make them all transit to ViewChanging
mode. Once validators are in ViewChanging mode, the sanity checks (line 21-25) are ignored, and
the leader can flood these validators by sending lots of announce messages with large block number
(line 122) so the validators would keep storing these messages and eventually cause them out of

memory.

Recommendation Add sanity checks for the legality of the announce messages.

3.11 Out-of-Memory in the Consensus Module - #2

e |ID: PVE-011 e Target: consensus/view_change.go
e Severity: Critical o Category: Behavioral Problems [16]
o Likelihood: High e CWE subcategory: CWE-115 [21]
e Impact: High

Description

Under harmony's PBFT consensus protocol, there are two causes for validators to start view change
process. One is when a validator detects the leader proposed two different announce messages in one
view, it would immediately start view change. The other is a validator doesn't make any progress
after timeout. There are two kinds of timeouts: timeout in normal consensus mode and timeout in
view change mode.

112 func (consensus xConsensus) startViewChange(viewlD uint64) {

113 if consensus.disableViewChange {

114 return

115 }

116 consensus.consensusTimeout[timeoutConsensus]. Stop ()
117 consensus.consensusTimeout [timeoutBootstrap]. Stop ()
118 consensus. current.SetMode(ViewChanging)

119 consensus.current.SetViewlD (viewlID)

120 consensus . LeaderPubKey = consensus. GetNextLeaderKey ()
121

122 diff := viewlD - consensus.viewlD

123 duration := time.Duration(int64(diff) % int64(viewChangeDuration))
124 consensus . getLogger () .Info ().

125 Uint64 ("ViewChangingID", viewlD).

126 Dur("timeoutDuration", duration).

40/62 PeckShield Audit Report #: 2019-22

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

144
145
146
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

Public

Str("NextLeader", consensus.leaderPubKey.SerializeToHexStr()).
Msg(" [startViewChangel")

msgToSend := consensus.constructViewChangeMessage ()
consensus . host.SendMessageToGroups ([] nodeconfig. GrouplD{
nodeconfig.NewGrouplDByShardID (nodeconfig.ShardID (consensus.ShardID)),

b

host. ConstructP2pMessage (byte(17), msgToSend),

consensus.consensusTimeout [timeoutViewChange]. SetDuration(duration)
consensus.consensusTimeout[timeoutViewChange]. Start ()
consensus . getLogger () .Debug() .

Uint64 ("ViewChangingID", consensus.current.ViewlD()).

Msg(" [startViewChange] start view change timer")

Listing 3.28: consensus/view change.go

startViewChange is called when a validator want to start a view change process. It would stop the
consensus timer (line 116), set current mode to ViewChanging (line 118), construct and send out
the view change message (line 130-135), and lastly, start the view change timer (line 137-138)

func (consensus xConsensus) onViewChange(msg *msg pb.Message) {

recvMsg, err := ParseViewChangeMessage (msg)
if err I= nil {
consensus . getLogger () .Warn() .Msg("[onViewChange] Unable To Parse Viewchange Message"
)
return
}
newleaderKey := recvMsg.LeaderPubkey

if !consensus.PubKey.IsEqual(newlLeaderKey) {
return

if consensus.Decider.IsQuorumAchieved (quorum.ViewChange) {
consensus . getLogger () .Debug() .
Int64 ("have", consensus.Decider.SignersCount(quorum.ViewChange)).
Int64 ("need", consensus.Decider. TwoThirdsSignersCount()).
Str("validatorPubKey", recvMsg.SenderPubkey.SerializeToHexStr()).
Msg(" [onViewChange] Received Enough View Change Messages")

return

senderKey , err := consensus.verifyViewChangeSenderKey (msg)

if err 1= nil {
consensus . getLogger () .Debug().Err(err).Msg("[onViewChange] VerifySenderKey Failed")
return

// TODO: if difference is only one, new leader can still propose the same committed

block to avoid another view change

41/62 PeckShield Audit Report #: 2019-22

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

196
197
198
199
200
201
202
203

349
350

351
352
353
354
355

356
357
358
359

Public

// TODO:

new leader catchup without ignore view change message

if consensus.blockNum > recvMsg.BlockNum {

consensus . getLogger () .Debug() .
Uint64 ("MsgBlockNum", recvMsg.BlockNum).
Msg(" [onViewChange] Message BlockNum Is Low")

retu

rn

if consensus.blockNum < recvMsg.BlockNum {

consensus . getLogger () .Warn() .
Uint64 ("MsgBlockNum", recvMsg.BlockNum).
Msg(" [onViewChange] New Leader Has Lower Blocknum")

retu

rn

if consensus.current.Mode() = ViewChanging &&

consensus.current.ViewlD () > recvMsg.ViewlD {

consensus . getLogger () .Warn() .

Uint64 ("MyViewChangingID", consensus.current.ViewlD()).
Uint64 ("MsgViewChangingID", recvMsg.ViewlD).
Msg(" [onViewChange] ViewChanging ID Is Low")

retu

}

if err

rn

= verifyMessageSig(senderKey, msg); err != nil {

consensus . getLogger () .Debug().Err(err).Msg("[onViewChange] Failed To Verify Sender’s

retu

Signature")

rn

consensus .vcLock.Lock()

defer consensus.vclock. Unlock ()

// update the dictionary key if the viewID is first time received

consensus . addViewIDKeylfNotExist (recvMsg. ViewlD)

Listing 3.29: consensus/view change.go

// received enough view change messages, change state to normal consensus

if consensus.Decider.IsQuorumAchievedByMask(consensus.viewIDBitmap|[recvMsg.ViewID],

true) {

consensus.current .SetMode(Normal)

consensus . LeaderPubKey = consensus.PubKey

consensus . ResetState ()

if len(consensus.mlPayload) = 0 {

// TODO(Chao): explain why ReadySignal is sent only in this case but not the

} else {

other case.

go func() {

30

consensus . ReadySignal <— struct{}{}

Listing 3.30: consensus/view change.go

42/62

PeckShield Audit Report #: 2019-22

395
396
397
398
399
400
401
402

403
404
405
406
407

628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

Public

consensus.current.setviewid (recvmsg.viewid)

msgtosend := consensus.constructnewviewmessage (recvmsg.viewid)

consensus . getLogger () .Warn() .
Int("payloadSize", len(consensus.mlPayload)).
Hex("M1Payload", consensus.mlPayload).
Msg(" [onViewChange] Sent NewView Message")
consensus . msgSender. SendWithRetry (consensus . blockNum, msg pb.MessageType NEWVIEW, []
nodeconfig.GrouplD{nodeconfig.NewGroupIlDByShardID(nodeconfig.ShardID (consensus.
ShardID))}, host.ConstructP2pMessage(byte(17), msgToSend))

consensus.viewid = recvmsg.viewid
consensus . resetviewchangestate ()
consensus.consensustimeout [timeoutviewchange].stop ()

consensus.consensustimeout [timeoutconsensus].start ()

Listing 3.31: consensus/view change.go

onViewChange is responsible for view change handling for validators. First, make sure it's the next
leader (line 151), then update the dictionary key if the viewlID is received for the first time (line 203)

Once new leader receives enough view change messages (line 350), it would change state to
normal, and reset the consensus state (line 351-353). Finally, new leader will construct and send out
a new view message to others (line 396-402), and reset its view change state (line 405). However,
there is no constraint on updating the dictionary key.

func (consensus *Consensus) addViewlDKeylfNotExist(viewlD uint64) {

members := consensus.Decider. Participants ()

if |, ok := consensus.bhpSigs[viewID]; lok {
consensus. bhpSigs[viewlD] = map[string]*bls.Sign{}

}

if |, ok := consensus.nilSigs[viewlID]; lok {
consensus . nilSigs [viewlD] = map|[string]*bls.Sign{}

¥

if , ok := consensus.viewIDSigs[viewID]; lok {
consensus.viewlDSigs[viewlD] = map[string]*bls.Sign{}

}

if , ok := consensus.bhpBitmap[viewID]; lok {
bhpBitmap, := bls_ cosi.NewMask(members, nil)
consensus . bhpBitmap[viewID] = bhpBitmap

}

if |, ok := consensus.nilBitmap[viewID]; lok {
nilBitmap, := bls_ cosi.NewMask(members, nil)
consensus . nilBitmap [viewID] = nilBitmap

¥

if | ok := consensus.viewlDBitmap[viewID]; lok {
viewIDBitmap, := bls_ cosi.NewMask(members, nil)
consensus.viewlDBitmap [viewlD] = viewIDBitmap

}

Listing 3.32: consensus/consensus_service.go

43/62 PeckShield Audit Report #: 2019-22

Public

A malicious validator could flood next leader by sending lots of view change messages with

different viewlD. addviewIDKeyIfNotExist would make new maps and masks for first time received

new viewlD. On the other hand, the crafted view change messages may never achieve quorum to

trigger view change process and clear the view state, so in the end, the next leader would run out of

memory.

Recommendation Add sanity checks for the viewlD of view change messages.

3.12 Consensus Suspending in the Consensus Module - #2

ID: PVE-012 e Target: consensus/view_change.go
Severity: Critical e Category: Behavioral Problems [16]
Likelihood: High e CWE subcategory: CWE-115 [21]
Impact: High

Description

Under harmony's PBFT consensus protocol, there are two causes for validators to start view change

process. One is when a validator detects the leader proposed two different announce messages in one

view,

it would immediately start view change. The other is a validator doesn't make any progress

after timeout. There are two kinds of timeouts: timeout in normal consensus mode and timeout in

view change mode.

The view change process is as follows:

1)

When the consensus timer timeouts, a node starts view change by sending view change message
including viewlD and prepared message (containing >=2f+1 aggregated signatures) to new
leader. If it doesn't receive prepared message, it just sends view change message including

signature on viewlD but without prepared message.

When the new leader receives enough (>=2f+1) view change messages, it aggregates signa-
tures of viewlD and just pick one prepared message from view change messages. It broadcasts
new view message including aggregated signatures as well as the picked prepared message.
Then the new leader switches to normal consensus mode. A validator switches to normal
consensus node when it receives new view message from the new leader, at the same time, it
stops the view change timer and start the consensus timer. If the validator doesn’t receive new
view message before view change timeout, it would increase viewlD by one and start another

view change.

44/62

PeckShield Audit Report #: 2019-22

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

515
516
517
518
519
520
521
522
523

Public

if recvMsg.M3AggSig = nil || recvMsg.M3Bitmap = nil {
consensus . getLogger().Error().Msg("[onNewView] M3AggSig or M3Bitmap is nil")
return

}

m3Sig := recvMsg.M3AggSig

m3Mask := recvMsg.M3Bitmap

viewIDBytes := make([] byte, 8)
binary.LittleEndian.PutUint64 (viewlDBytes, recvMsg.ViewlID)

if !consensus.Decider.|sQuorumAchievedByMask(m3Mask, true) {
consensus . getLogger () .Warn() .
Msgf(" [onNewView] Quorum Not achieved")
return

if !'m3Sig.VerifyHash(m3Mask. AggregatePublic, viewIDBytes) {
consensus . getLogger () .Warn() .
Str("m3Sig", m3Sig.SerializeToHexStr()).
Hex ("m3Mask", m3Mask. Bitmap).
Uint64 ("MsgViewID", recvMsg.ViewlD).
Msg(" [onNewView] Unable to Verify Aggregated Signature of M3 (ViewID) payload")
return

Listing 3.33: consensus/view change.go

// newView message verified success, override my state
consensus.viewlD = recvMsg. ViewlID
consensus.current.SetViewlID (recvMsg. ViewlID)
consensus . LeaderPubKey = senderKey
consensus . ResetViewChangeState ()

// change view and leaderKey to keep in sync with network
if consensus.blockNum != recvMsg.BlockNum {
consensus . getLogger () .Debug() .

Listing 3.34: consensus/view change.go

onNewView is called when a validator receives the new view message from new leader at step 2.

It would check whether the signature of viewID is valid and achieved the quorum (line 440-463). If

verified successly, the consensus state would be updated (line 516-519).

However, some sanity checks are missing:

1) recvMsg.ViewID should > consensus.current.ViewlD()

2) new view message should only come from next leader

A malicious next leader could save the new view message, and broadcast out whenever it wants

to become leader, thus break the harmony network consensus. On the other hand, any committee

45/62 PeckShield Audit Report #: 2019-22

94
95
96
97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

Public

member can also send the new view message to other validators, though it may not become the

leader, can still compromise the consensus.

Recommendation Add sanity checks for the viewID of new view messages.

3.13 Consensus Suspending in the Consensus Module - #3

e |ID: PVE-013 e Target: consensus/checks.go

e Severity: High e Category: Input Validation Issues [22]
e Likelihood: Medium e CWE subcategory: CWE-349 [23]

e Impact: High

Description

This is a vulnerability in the consensus module, which could be exploited by attackers to compromise
the harmony network consensus.

As an improvement on PBFT, Harmony's consensus protocol is linearly scalable in terms of
communication complexity, and thus it is called Fast Byzantine Fault Tolerance (FBFT).

In prepare phase, the validator sends prepare message (e.g. signature on blockhash) to leader.
When leader receives enough (i.e. >=2f+1) prepare messages, it aggregates signatures of prepare
messages received from validators and sends out prepared message contains aggregated prepare
signatures and the candidate block.

func (consensus xConsensus) onPrepared(msg *msg pb. Message) {
recvMsg , err := ParseFBFTMessage(msg)
if err 1= nil {
consensus . getlLogger().Debug().Err(err).Msg("[OnPrepared] Unparseable validator
message")
return
¥
consensus . getlLogger () .Info ().
Uint64 ("MsgBlockNum", recvMsg.BlockNum).
Uint64 ("MsgViewID", recvMsg.ViewlD).
Msg (" [OnPrepared] Received prepared message")

if recvMsg.BlockNum < consensus.blockNum {
consensus . getLogger () .Debug().Uint64("MsgBlockNum", recvMsg.BlockNum).
Msg("Wrong BlockNum Received, ignoring!")
return

}

// check validity of prepared signature
blockHash := recvMsg.BlockHash
aggSig, mask, err := consensus.ReadSignatureBitmapPayload(recvMsg.Payload, 0)

46/62 PeckShield Audit Report #: 2019-22

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

234
235
236
237
238
239

Public

if err I= nil {
consensus . getLogger().Error().Err(err).Msg("ReadSignatureBitmapPayload failed!")
return

if lconsensus.Decider.IsQuorumAchievedByMask(mask) {
consensus . getLogger().Warn() .
Msgf(" [OnPrepared] Quorum Not achieved")
return

if laggSig.VerifyHash(mask.AggregatePublic, blockHash[:]) {
myBlockHash := common.Hash{}
myBlockHash . SetBytes (consensus.blockHash [:])
consensus . getLogger () .Warn() .
Uint64 ("MsgBlockNum", recvMsg.BlockNum).
Uint64 ("MsgViewID", recvMsg.ViewlD).
Msg(" [OnPrepared] failed to verify multi signature for prepare phase")

return

// check validity of block
var blockObj types.Block
if err := rlp.DecodeBytes(recvMsg.Block, &blockObj); err I= nil {
consensus . getLogger().Warn() .
Err(err).
Uint64 ("MsgBlockNum", recvMsg.BlockNum).
Msg(" [OnPrepared] Unparseable block header data")
return
¥
// let this handle it own logs
if lconsensus.onPreparedSanityChecks(&blockObj, recvMsg) {
return
b
consensus . mutex. Lock ()
defer consensus.mutex.Unlock ()

consensus . FBFTLog. AddBlock(&blockObj)

Listing 3.35: consensus/validator.go

onPrepared is called when validators receives prepared message from the leader. It would perform
lots of sanity checks to make sure the message is valid. If it's legit, validators would store the
attached block (line 151)

func (consensus *Consensus) onCommitted (msg *msg pb.Message) {
recvMsg, err := ParseFBFTMessage(msg)
if err I= nil {
consensus . getLogger () .Warn() .Msg(" [OnCommitted] unable to parse msg")
return

47/62 PeckShield Audit Report #: 2019-22

240
241
242
243
244
245
246
247

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

283
284
285
286
287
288
289

Public

// NOTE let it handle its own logs
if lconsensus.isRightBlockNumCheck(recvMsg) {

return
}
aggSig, mask, err := consensus.ReadSignatureBitmapPayload (recvMsg.Payload, 0)
if err I= nil {
consensus . getLogger().Error().Err(err).Msg("[OnCommitted] readSignatureBitmapPayload
failed")
return
}

if lconsensus.Decider.IsQuorumAchievedByMask (mask) {
consensus . getLogger () .Warn() .
Msgf(" [OnCommitted] Quorum Not achieved")
return

// TODO(audit): verify signature on hash+blockNum+viewID (add a hard fork)
blockNumBytes := make ([] byte, 8)
binary.LittleEndian.PutUint64 (blockNumBytes, recvMsg.BlockNum)
commitPayload := append(blockNumBytes, recvMsg.BlockHash [:]...)
if laggSig.VerifyHash(mask.AggregatePublic, commitPayload) {
consensus . getlLogger (). Error ().
Uint64 ("MsgBlockNum", recvMsg.BlockNum).
Msg(" [OnCommitted] Failed to verify the multi signature for commit phase")
return

consensus . FBFTLog. AddMessage (recvMsg)
consensus . ChainReader. WriteLastCommits(recvMsg. Payload)
consensus . getLogger () .Debug() .

Uint64 ("MsgViewID", recvMsg.ViewlD).

Uint64 ("MsgBlockNum", recvMsg.BlockNum).

Msg (" [OnCommitted] Committed message added")

consensus . mutex. Lock ()
defer consensus.mutex.Unlock ()

consensus . aggregatedCommitSig = aggSig

consensus.commitBitmap = mask

if recvMsg.BlockNum—consensus.blockNum > consensusBlockNumBuffer {
consensus . getLogger () .Debug().Uint64("MsgBlockNum", recvMsg.BlockNum) . Msg("[
OnCommitted] out of sync")
go func() {
select {
case consensus.BlockNumLowChan <— struct {}{}:
consensus.current.SetMode(Syncing)
for |, v := range consensus.consensusTimeout {
v.Stop ()

¥

48/62 PeckShield Audit Report #: 2019-22

290
291
292
293
294
295
296
297
298

299
300
301
302
303
304

305
306
307
308
309

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

Public

case <—time.After(l * time.Second):

}
0

return

consensus . tryCatchup ()
if consensus.current.Mode() = ViewChanging {
consensus . getLogger () .Debug().Msg("[OnCommitted] Still in ViewChanging mode, Exiting
tem)

return

if consensus.consensusTimeout[timeoutBootstrap].IsActive () {
consensus.consensusTimeout[timeoutBootstrap]. Stop ()
consensus . getLogger () .Debug().Msg("[OnCommitted] Start consensus timer; stop
bootstrap timer only once")

} else {

consensus . getLogger () .Debug().Msg("[OnCommitted] Start consensus timer")

}

consensus.consensusTimeout[timeoutConsensus]. Start ()

Listing 3.36: consensus/validator.go

After all validators agreed on the prepared message and enough commit messages are collected
by the leader (i.e. >=2f+1), it would send committed message. onCommitted is called to handle the
message, it would also perform lots of sanity checks to make sure the message is valid. If all seem
right, this round is finished and the consensus timer would be reset (line 308).

However, the sanity checks in onPreparedSanityChecks can't guarantee the block is valid.

func (consensus *Consensus) onPreparedSanityChecks(
blockObj xtypes.Block, recvMsg *FBFTMessage,
) bool {
if blockObj.NumberU64() != recvMsg.BlockNum ||
recvMsg . BlockNum < consensus.blockNum {
consensus . getLogger () .Warn() .
Uint64 ("MsgBlockNum", recvMsg.BlockNum).
Uint64 ("blockNum", blockObj.NumberU64()).
Msg(" [OnPrepared] BlockNum not match")
return false
¥
if blockObj.Header().Hash() != recvMsg.BlockHash {
consensus . getLogger () .Warn() .
Uint64 ("MsgBlockNum", recvMsg.BlockNum).
Hex("MsgBlockHash", recvMsg.BlockHash [:]) .
Str("blockObjHash", blockObj.Header().Hash().Hex()).
Msg(" [OnPrepared] BlockHash not match")
return false
¥
if consensus.current.Mode() = Normal {
err := chain.Engine.VerifyHeader (consensus.ChainReader, blockObj.Header(), true)

49/62 PeckShield Audit Report #: 2019-22

151
152
153
154
155
156
157
158
159
160
161
162

163
164
165
166
167
168

205

206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

Public

if err 1= nil {
consensus . getLogger().Error ().
Err(err).

Str("inChain", consensus.ChainReader.CurrentHeader().Number().String()).
Str("MsgBlockNum", blockObj.Header().Number().String())-.
Msg(" [OnPrepared] Block header is not verified successfully")

return false

}
if consensus.BlockVerifier = nil {
// do mnothing
} else if err := consensus.BlockVerifier(blockObj); err != nil {
consensus . getLogger().Error().Err(err).Msg("[OnPrepared] Block verification failed
)
return false
}
¥

return true

Listing 3.37: consensus/checks.go

Specifically, a malicious leader can bypass the sanity checks (line 149-165) by making validators
switch to Syncing mode.

func (node xNode) DoSyncing(bc *core.BlockChain, worker xworker.Worker,

willJoinConsensus bool) {

// TODO ek infinite loop; add shutdown/cleanup logic
Syncingloop:
for {
if node.stateSync = nil {
node.stateSync = syncing.CreateStateSync(node.SelfPeer.IP, node.SelfPeer.Port,
node. GetSynclID ())
utils.Logger().Debug().Msg("[SYNC] initialized state sync")
¥
if node.stateSync.GetActivePeerNumber() < MinConnectedPeers {
shardID := bc.ShardID ()
peers, err := node.SyncingPeerProvider.SyncingPeers(shardID)
if err I= nil {
utils.Logger().Warn().
Err(err).
Uint32("shard_id", shardID).
Msg("cannot retrieve syncing peers")
continue Syncingloop
}
if err := node.stateSync.CreateSyncConfig(peers, false); err != nil {
utils.Logger().Warn().
Err(err).
Interface ("peers", peers).
Msg(" [SYNC] create peers error")
continue Syncingloop

}

50/62 PeckShield Audit Report #: 2019-22

231

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

403
404
405

208
209
210
211
212

213
214

Public

utils.Logger().Debug().Int("len", node.stateSync.GetActivePeerNumber()).Msg(" [SYNC
] Get Active Peers")
}
// TODO: treat fake maximum height
if node.stateSync.IsOutOfSync(bc) {
node.stateMutex. Lock ()
node.State = NodeNotInSync
node.stateMutex . Unlock ()
if willJoinConsensus {
node. Consensus. BlocksNotSynchronized ()
}
node.stateSync.SynclLoop(bc, worker, false, node.Consensus)
if willJoinConsensus {
node.stateMutex. Lock ()
node.State = NodeReadyForConsensus
node.stateMutex. Unlock ()
node. Consensus. BlocksSynchronized ()

}
}
node.stateMutex. Lock ()
node.State = NodeReadyForConsensus

node.stateMutex. Unlock ()
// TODO on demand syncing
time.Sleep(time.Duration(node.syncFreq) * time.Second)

Listing 3.38: node/node syncing.go

A node would switch to Syncing mode if the node thinks it's out of sync (line 234, 239). How a
node decides whether it's out of sync is by asking other peers about their block height.

case downloader pb.DownloaderRequest BLOCKHEIGHT:
response . BlockHeight = node.Blockchain (). CurrentBlock ().NumberU64 ()

I3
Listing 3.39: node/node syncing.go

Theoretically, the malicious leader could trick other committee into Syncing mode by returning
a fake high block height. Once validators are in Syncing mode, they would skip the block sanity
checks in onPreparedSanityChecks, store whatever kind of block the leader sent and reply with the
corresponding commit message. Once leader has enough commit message, it would send committed
message to validators, and start a new round.

func (consensus xConsensus) tryCatchup() {
consensus . getLogger().Info () .Msg("[TryCatchup] commit new blocks")

currentBlockNum := consensus.blockNum
for {
msgs := consensus.FBFTLog. GetMessagesByTypeSeq (msg_pb.MessageType COMMITTED,
consensus . blockNum)
if len(msgs) = 0 {
break

51/62 PeckShield Audit Report #: 2019-22

215
216
217
218
219

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

Public

¥
if len(msgs) > 1 {
consensus . getLogger (). Error ().

Int("numMsgs", len(msgs)).
Msg(" [TryCatchup] DANGER!!! we should only get one committed message for a given
blockNum")
¥
consensus . getLogger().Info().Msg("[TryCatchup] committed message found")
block := consensus.FBFTLog. GetBlockByHash(msgs[0]. BlockHash)
if block = nil {
break
¥
if consensus.BlockVerifier = nil {
// do nothing
} else if err := consensus.BlockVerifier(block); err I= nil {
consensus . getLogger().Info().Msg("[TryCatchup] block verification failed")
return
¥
if block.ParentHash() != consensus.ChainReader. CurrentHeader () .Hash() {

consensus . getLogger () .Debug() .Msg("[TryCatchup] parent block hash not match")
break
}

consensus . getLogger().Info () .Msg("[TryCatchup] block found to commit")

preparedMsgs := consensus.FBFTLog. GetMessagesByTypeSeqHash (
msg_pb.MessageType PREPARED, msgs[0].BlockNum, msgs[0].BlockHash ,
)
msg := consensus.FBFTLog. FindMessageByMaxView|D (preparedMsgs)
if msg = nil {
break
}

consensus . getlLogger().Info().Msg("[TryCatchup] prepared message found to commit")

// TODO(Chao): Explain the reasoning for these code
consensus . blockHash = [32]byte{}

consensus . blockNum = consensus.blockNum + 1
consensus.viewlD = msgs[0].ViewlD + 1
consensus . lLeaderPubKey = msgs[0]. SenderPubkey

consensus . getLogger().Info () .Msg("[TryCatchup] Adding block to chain")
consensus . OnConsensusDone(block, msgs[0]. Payload)
consensus . ResetState ()

select {
case consensus. VerifiedNewBlock <— block:
default:
consensus . getlLogger().Info ().
Str("blockHash", block.Hash().String()).
Msg(" [TryCatchup] consensus verified block send to chan failed")

52/62 PeckShield Audit Report #: 2019-22

Public

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287 1}
288 1}

continue

¥

break
}
if currentBlockNum < consensus.blockNum {
consensus . getLogger (). Info ().
Uint64 ("From", currentBlockNum).
Uint64 ("To", consensus.blockNum).
Msg(" [TryCatchup] Caught up!")
consensus.switchPhase (FBFTAnnounce, true)
}
// catup up and skip from view change trap
if currentBlockNum < consensus.blockNum &&
consensus. current.Mode() = ViewChanging {
consensus.current.SetMode(Normal)
consensus.consensusTimeout [timeoutViewChange]. Stop ()

}

// clean up old log

consensus .FBFTLog. DeleteBlocksLessThan(consensus.blockNum — 1)

consensus .FBFTLog. DeleteMessagesLessThan (consensus.blockNum - 1)

Listing 3.40: consensus/consensu

s_v2.go

However, this round may not be able to complete. Say, if the leader sends a malformed block

within the prepared message and bypasses the block sanity checks as we explained above, then

tryCatchup would not be able to proceed because the validity checks (line 240-248), thus validators

would not go to next round(line 261-268). What even worse is onComnitted would reset the consensus

timer in the end, so the malicious leader could use the same committed message to suspend the

consensus process and eventually compromise the entire harmony network.

Also, consensus module uses mapset.Set to store received blocks / messages, but they are stored

by their addresses, not contents (fields). So this vulnerability could also be exploited to attack

committee members by flooding and make them Out-of-Memory.

Recommendation Add check when receiving peer's bloc

k height.

3.14 Missing Sanity Check on Slash Records - #1

e |ID: PVE-014 e Target: staking/slash/double-sign.go
e Severity: Critical e Category: Input Validation Issues [22]
e Likelihood: High e CWE subcategory: CWE-349 [23]

e Impact: High

53/62

PeckShield Audit Report #: 2019-22

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

332
333
334

Public

Description

This is a vulnerability in the slashing module, which could be exploited by attackers to compromise
the harmony network consensus. Harmony network introduces Effective Proof-of-Stake, an efficient
staking mechanism that avoids stake centralization while still supporting stake compounding and
delegation.

In addition to the block rewards used to incentivize good behavior, the slashing mechanism is
equally important as it can deter misbehavior and potential attacks. In EPoS, there are slashing rules
for misbehaviors like double-signing or unavailability.

func (consensus xConsensus) onCommit(msg *msg_pb.Message) {

recvMsg, err := ParseFBFTMessage(msg)
log := consensus.getLogger ()
if err I= nil {

consensus . getLogger () .Debug().Err(err).Msg("[OnCommit] Parse pbft message failed")
return

// NOTE let it handle its own log
if !consensus.isRightBlockNumAndViewID (recvMsg) {
return

}

consensus . mutex. Lock ()

defer consensus.mutex. Unlock ()

// TODO(audit): refactor into a new func
if key := (bls.PublicKey{}); consensus.couldThisBeADoubleSigner(recvMsg) {
if alreadyCastBallot := consensus.Decider.ReadBallot(
quorum . Commit, recvMsg.SenderPubkey ,
); alreadyCastBallot != nil {
for , blk := range consensus.FBFTLog. GetBlocksByNumber(recvMsg.BlockNum) {
alreadyCastBallot.SignerPubKey. ToLibBLSPublicKey(&key)
if recvMsg.SenderPubkey.lsEqual(&key) {

signed := blk.Header()
areHeightsEqual := signed.Number().Uint64 () = recvMsg.BlockNum
areViewlDsEqual := signed.ViewlD().Uint64 () = recvMsg. ViewlD
areHeadersEqual := bytes.Compare(

signed . Hash () . Bytes (), recvMsg.BlockHash.Bytes(),
) =0

Listing 3.41: consensus/leader.go

onCommit is called when leader receives commit messages from validators. It would perform lots
of sanity checks to make sure the message is valid, also the submitter is not a double-signer (line
213-225).

func (w xWorker) CollectVerifiedSlashes() error {
pending, failures :=
w.chain.ReadPendingSlashingCandidates (), slash.Records{}

54/62 PeckShield Audit Report #: 2019-22

335
336
337
338
339
340
341
342
343
344
345
346

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

Public

if d := pending; len(d) > 0 {
pending, failures = w.verifySlashes (d)

¥
if f:= failures; len(f) > 0 {
if err := w.chain.DeleteFromPendingSlashingCandidates(f); err != nil {
return err
}
}
w.current.slashes = pending
return nil

Listing 3.42: node/worker/worker.go

CollectVerifiedSlashes is responsible for collecting slashing evidences for double-signer which

would be used later in block producing. However, the sanity check in CollectVerifiedSlashes could
be bypassed and cause serious damages to the harmony network consensus.

func Verify(

chain CommitteeReader ,
state xstate.DB,
candidate *Record,

error {

wrapper, err := state.ValidatorWrapper(candidate.Offender)

if err I= nil {
return err

}

if wrapper.EPOSStatus = effective.Banned {
return errAlreadyBannedValidator

¥

if candidate.Offender = candidate. Reporter {
return errReporterAndOffenderSame

}

first , second :=
candidate. Evidence . AlreadyCastBallot ,
candidate . Evidence.DoubleSignedBallot

kl, k2 := len(first.SignerPubKey), len(second.SignerPubKey)
if k1 != shard.PublicKeySizelnBytes ||
k2 != shard.PublicKeySizelnBytes {

return errors.Wrapf(
errSignerKeyNotRightSize , "cast key %d double-signed key %d", kl, k2,

)
}

if shard.CompareBlsPublicKey(first.SignerPubKey, second.SignerPubKey) I= 0 {
kl, k2 := first.SignerPubKey.Hex (), second.SignerPubKey.Hex()
return errors.Wrapf(
errBallotSignerKeysNotSame , "%s %s", kl, k2,

55/62 PeckShield Audit Report #: 2019-22

186
187
188
189

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

Public

)
}

currentEpoch := chain. CurrentBlock () .Epoch()
// the slash can’t come from the future (shard chain’s epoch can’t be larger than

beacon chain’s)

if candidate.Evidence.Epoch.Cmp(currentEpoch) = 1 {
return errors.Wrapf(
errSlashFromFutureEpoch, "current-epoch %v", currentEpoch,
)
¥
superCommittee, err := chain.ReadShardState(candidate.Evidence.Epoch)
if err I= nil {
return err
¥
subCommittee, err := superCommittee.FindCommitteeBylD (
candidate . Evidence.ShardID ,
)

if err 1= nil {
return errors.Wrapf(
err, "given shardID %d", candidate.Evidence.ShardID,

)

ks

if addr, err := subCommittee.AddressForBLSKey (
second . SignerPubKey ,

); err != nil || xaddr != candidate.Offender {
return err

ks

for , ballot := range [...]votepower.Ballot{

candidate . Evidence. AlreadyCastBallot ,
candidate . Evidence.DoubleSignedBallot ,

Ao
// now the only real assurance, cryptography
signature := &bls.Sign{}
publicKey := &bls.PublicKey{}

if err := signature.Deserialize(ballot.Signature); err != nil {
return err

¥

if err := first.SignerPubKey.ToLibBLSPublicKey(publicKey); err I= nil {
return err

¥

blockNumBytes := make ([] byte, 8)

// TODO(audit): add view ID into signature payload
binary.LittleEndian.PutUint64 (blockNumBytes, ballot.Height)
commitPayload := append(blockNumBytes, ballot.BlockHeaderHash [:]...)

56/62 PeckShield Audit Report #: 2019-22

237
238
239
240
241
242
243

196
197
198
199
200
201
202
203
204
205

Public

if Isignature.VerifyHash(publicKey, commitPayload) {
return errFailVerifySlash

¥
}

return nil

}
Listing 3.43: staking/slash/double-sign.go

However, the sanity check could be bypassed by providing two identical votepower.ballot since
the loop (line 218-240) doesn't verify whether the two records are exactly the same. So an attacker
could broadcast some crafted slash records, and the leader would take these records into account
while producing new blocks, slash innocent validators and delegators, eventually compromise the

whole harmony network.

Recommendation Add more checks when receiving slash records.

3.15 Missing Sanity Check on Slash Records - #2

e |ID: PVE-015 e Target: core/blockchain.go

e Severity: High e Category: Behavioral Problems [16]
o Likelihood: High e CWE subcategory: CWE-115 [21]
e Impact: Medium

Description

This is a vulnerability in the slashing module, which could be exploited by attackers to compromise
the harmony network consensus. Harmony introduces Effective Proof-of-Stake, an efficient staking
mechanism that avoids stake centralization while still supporting stake compounding and delegation.
In addition to the block rewards used to incentivize good behavior, the slashing mechanism is equally
important as it can deter misbehavior and potential attacks. In EPoS, there are slashing rules for
misbehavior like double-signing or unavailability.

func (consensus xConsensus) onCommit(msg *msg_ pb. Message) {
recvMsg , err := ParseFBFTMessage(msg)
log := consensus.getlLogger ()
if err 1= nil {
consensus . getLogger().Debug().Err(err).Msg("[OnCommit] Parse pbft message failed")

return

}

// NOTE let it handle its own log
if lconsensus.isRightBlockNumAndViewlD (recvMsg) {

57/62 PeckShield Audit Report #: 2019-22

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617

Public

return

consensus . mutex. Lock ()
defer consensus.mutex.Unlock ()

// TODO(audit): refactor into a new func
if key := (bls.PublicKey{}); consensus.couldThisBeADoubleSigner(recvMsg) {
if alreadyCastBallot := consensus.Decider.ReadBallot(
quorum . Commit, recvMsg.SenderPubkey,
); alreadyCastBallot != nil {
for , blk := range consensus.FBFTLog. GetBlocksByNumber (recvMsg.BlockNum) {
alreadyCastBallot.SignerPubKey. ToLibBLSPublicKey(&key)
if recvMsg.SenderPubkey.lsEqual(&key) {

signed := blk.Header()
areHeightsEqual := signed.Number().Uint64 () = recvMsg.BlockNum
areViewlDsEqual := signed.ViewID ().Uint64 () = recvMsg. ViewlD
areHeadersEqual := bytes.Compare(

signed . Hash () . Bytes (), recvMsg.BlockHash.Bytes (),
) =0

Listing 3.44: consensus/leader.go

onCommit is called when leader receives commit messages from validators. It would perform lots
of sanity checks to make sure the message is valid, and the submitter is not a double-signer(line
213-225).

case doubleSign := <—node.Consensus.SlashChan:
utils.Logger().Info().
RawJSON("double -sign-candidate", []byte(doubleSign.String())).
Msg("double sign notified by consensus leader")
// mno point to broadcast the slash if we aren’t even in the right epoch yet
if Inode.Blockchain().Config().lsStaking(
node. Blockchain (). CurrentHeader () .Epoch (),

) A
return
b
if hooks := node.NodeConfig.WebHooks.Hooks; hooks != nil {
if s := hooks.Slashing; s != nil {
url := s.OnNoticeDoubleSign
go func() { webhooks.DoPost(url, &doubleSign) }()
}
¥

if node.NodeConfig.ShardID != shard.BeaconChainShardID {
go node.BroadcastSlash(&doubleSign)

} else {
records := slash.Records{doubleSign}
if err := node.Blockchain().AddPendingSlashingCandidates (
records ,
); err I= nil {

utils.Logger().Err(err).Msg("could not add new slash to ending slashes")

58/62 PeckShield Audit Report #: 2019-22

Public

618 }
619 }

Listing 3.45: node/node.go

When double-signer is detected, beacon chain leader would call AddPendingS1ashingCandidates to
store the record (line 613); leaders of other shards would broadcast it to beacon chain through P2P
message (line 610) .

39 func (bc *BlockChain) AddPendingSlashingCandidates(
40 candidates slash.Records,

41) error {

42 bc.pendingSlashingCandidatesMU . Lock ()

43 defer bc.pendingSlashingCandidatesMU . Unlock ()

44 current := bc.ReadPendingSlashingCandidates ()

45 pendingSlashes := append(

46 bc.pendingSlashes, current.SetDifference(candidates) ...,

47)

48 if 1, ¢ := len(pendingSlashes), len(current); | > maxPendingSlashes {
49 return errors . Wrapf(

50 errExceedMaxPendingSlashes, "current %d with-additional %d", c, |,
51)

52 }

53 bc.pendingSlashes = pendingSlashes
54 return bc.writeSlashes(bc.pendingSlashes)
55 1}

Listing 3.46: core/blockchain.go

AddPendingSlashingCandidates would make sure each slash record is unique (line 2038) and the length
won't go beyond maxPendingSlashes. However, there is no sanity check to guarantee the slash records
are valid, nor a limitation on how many records a node can send to others. So theoretically, a
malicious node can flood a leader to stuff bc.pendingSiashes with lots of slash records, which could
prevent legit slash records from being inserted into the slice and disable the slashing mechanism in a
way. On the other hand, the uniqueness check can also be easily bypassed by adjusting some fields

in the record, e.g., TimeUnixNano.

Recommendation Add more checks when adding slashing candidates.

59/62 PeckShield Audit Report #: 2019-22

Public

4 Conclusion

For this security audit, we have analyzed the Harmony Blockchain. During the first phase of our au-
dit, we studied the source code and ran our in-house analyzing tools through the codebase, including
areas such as Harmony VM and crypto libraries. Next, we audited the general token transfer, staking,
and consensus logics, after that, we examined the slash logics. A list of potential issues were found,
and some of them involve unusual interactions among multiple modules, therefore we developed test
cases to reproduce and verify each of them. After further analysis and internal discussion, we deter-
mined that a number of issues need to be brought up and pay more attention to, which are reported
in Sections 2 and 3. Given that the reported issues have been confirmed and fixed, we do feel that
the Harmony blockchain code has been thoroughly inspected, therefore they can be deployed on the

blockchain with confidence.

Our impression through this audit is that the Harmony Blockchain software is neatly organized
and elegantly implemented and those identified issues are promptly confirmed and fixed. We'd like
to commend Harmony for a well-done software project, and for quickly fixing issues found during
the audit process. Also, as expressed in Section 1.4, we appreciate any constructive feedback or

suggestions about this report.

60/62 PeckShield Audit Report #: 2019-22

Public

References

[1] Harmony. Harmony Inc. https://harmony.one.
[2] PeckShield. PeckShield Inc. https://www.peckshield.com.

[3] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP _Risk

Rating Methodology.
[4] Lcamtuf. american fuzzy lop. http://lcamtuf.coredump.cx/afl/.
[5] gofuzz. gofuzz. https://github.com/dvyukov/go-fuzz.

[6] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[7] Wikipedia. Boneh-Lynn-Shacham. https://en.wikipedia.org/wiki/Boneh%E2%80%93Lynn%
E2%80%93Shacham.

[8] Wikipedia. Elliptic Curve Digital Signature Algorithm. https://en.wikipedia.org/wiki/Elliptic_

Curve_Digital Signature Algorithm.
[9] Wikipedia. Schnorr signature. https://en.wikipedia.org/wiki/Schnorr _signature.

[10] MITSUNARI Shigeo. An implementation of BLS threshold signature. https://github.com/
herumi/bls.

[11] PeckShield. Pwning Fomo3D Revealed: Iterative, Pre-Calculated Contract Creation For Airdrop

Prizes! https://blog.peckshield.com/2018/07/24 /fomo3d/.

61/62 PeckShield Audit Report #: 2019-22

https://harmony.one
https://www.peckshield.com
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://lcamtuf.coredump.cx/afl/
https://github.com/dvyukov/go-fuzz
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://en.wikipedia.org/wiki/Boneh%E2%80%93Lynn%E2%80%93Shacham
https://en.wikipedia.org/wiki/Boneh%E2%80%93Lynn%E2%80%93Shacham
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Schnorr_signature
https://github.com/herumi/bls
https://github.com/herumi/bls
https://blog.peckshield.com/2018/07/24/fomo3d/

Public

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

PeckShield. Defeating EOS Gambling Games: The Techniques Behind Random Number Loop-
hole. https://blog.peckshield.com/2018/11/22/eos/.

Benjamin Wesolowski. Efficient verifiable delay functions. Advances in Cryptology —

EUROCRYPT 2019, 11478:379-407, 2019.

MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/
1006.html.

MITRE. CWE-20: Improper Input Validation. https://cwe.mitre.org/data/definitions/20.html.

MITRE. CWE CATEGORY: Behavioral Problems. https://cwe.mitre.org/data/definitions/438.

html.

MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/
data/definitions/841.html.

MITRE. CWE-129: Improper Validation of Array Index. https://cwe.mitre.org/data/
definitions/129.html.

MITRE. CWE-696: Incorrect Behavior Order. https://cwe.mitre.org/data/definitions/696.html.

MITRE. CWE CATEGORY: Integer Overflow or Wraparound. https://cwe.mitre.org/data/
definitions/190.html.

MITRE. CWE-115: Misinterpretation of Input. https://cwe.mitre.org/data/definitions/115.

html.

MITRE. CWE-1215: Input Validation Issues. https://cwe.mitre.org/data/definitions/1215.

html.

MITRE. CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data. https:

//cwe.mitre.org/data/definitions/349.html.

62/62 PeckShield Audit Report #: 2019-22

https://blog.peckshield.com/2018/11/22/eos/
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/438.html
https://cwe.mitre.org/data/definitions/438.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/696.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/115.html
https://cwe.mitre.org/data/definitions/115.html
https://cwe.mitre.org/data/definitions/1215.html
https://cwe.mitre.org/data/definitions/1215.html
https://cwe.mitre.org/data/definitions/349.html
https://cwe.mitre.org/data/definitions/349.html

	Introduction
	About Harmony Blockchain
	About PeckShield
	Methodology
	Risk Model
	Fuzzing
	White-box Audit

	Disclaimer

	Findings
	Finding Summary
	Key Findings

	Detailed Results
	Missing Sanity Check When Adding Cross Shard Receipts
	Missing Penalty When Leaders Not Processing Cross Shard Receipts
	Out-of-Bounds Access in the P2P Module - #1
	Out-of-Bounds Access in the P2P Module - #2
	Out-of-Bounds Access in the P2P Module - #3
	DoS Vulnerability in the P2P Module - #1
	DoS Vulnerability in the P2P Module - #2
	Integer Overflow in the RPC Module
	Consensus Suspending in the Consensus Module - #1
	Out-of-Memory in the Consensus Module - #1
	Out-of-Memory in the Consensus Module - #2
	Consensus Suspending in the Consensus Module - #2
	Consensus Suspending in the Consensus Module - #3
	Missing Sanity Check on Slash Records - #1
	Missing Sanity Check on Slash Records - #2

	Conclusion
	References

